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THE GENERALISED DINAMICAL PROBLEM OF
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Odessa), M. El-Sheikh (4in Shams University Cairo, Egipt), E. Maltseva
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In this paper, a dynamical problem for an infinite hollow cylinder in
the generalized theory of thermoelasticity has been considered. The
precise solution is obtained by the use of the Laplace transform on time
and the finite integral transform on space.

The point of departure is the system of one-dimensional equations [1]
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where A=—0-+ . ¥(r,t) is the thermoelastic potential, defined by
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y s
the formula u(r,t)= %—-; u(r,t) Is the displacement, ay is the thermal
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diffusivity, n = (1 (Zv): ) arTy is the coupling constant, ay is the coeffi-
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cient of linear thermal expansion, ¢, = J (1
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¢lasticity, v is the Poisson’s ratio, p 1s the density, m = Qy, Ag IS

the coefficient of thermal conductivity.
T'he solution of the problem (1)-(4) can be thought of in the form

T(r, t) =17 (r, t)+ cp(r, t),
‘P(r, t)== ‘P(r, t)+ w(r, t),
o(r, )= A[)Inr + B,  wr, )= C(O)nr+D(t)?,

A() = (Rogy (0)- Riga () BO)= (e (/R -1 (V/R,).

C(t)= “Z‘(thl (t)-Ryh,(t)), D(t)= %(hz(t)/Rl ~hy(t)/R;),

A= 2(R§ —Rf)/n,nz .
T'he substitution of (5) into (1)-(4) yields
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where
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T*(r,0)= -¢(r,0), ¥*(r,0)=—y(r,0),
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where f,(r,t)-4n ry A(t) . Bt
2
fz(r,t)= m(p(r,t)+ 12 e ;V -—4D(t).
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We solve the problem (6), (7) by using the finite integral transforms [2].
T'o do this we find the solution of the following Sturm-Liouville problem
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W'(r)= 0 if r=R; (j= 1,2)

We obtain
Wa (l')= AnJO(an)'*' BnYﬂ('an)ﬁ

of
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where J,(y,R,) and Y, (-yan) are the Bessel functions of the first and the

second kind of order zero.
The coefficient B, is defined from the condition

R,
| W,f(r)rdr =1.
R,

The eigenvalues y, satisfy the equation

I (1aR;)Y'o (YaR2) -3 (vaR3)Y'e (y4R;)=0. 9)
The finite transforms and the inversion formulas are

(0= (1% (e, W, (F)rdr ‘I‘;(t)=zz‘P*(r,t)W(r)rdr (10)

T+ (0= EROW0). ¥il)= TREwE)  an

Applying the transforms (10) to the system of equations (6) and to the
boundary conditions (7) we arrive at the following system of ordinary dif-

ferential equations with respect to T; (t) and ‘P: (t)

W
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ar dt ~“NYa dt +7§Tl:=fln(t)’ -
T 4 .
CIZ dtzn L an‘Pn +mT, =1, (t)
with the initial conditions
: g dv.,  dy. (0
T0)=-0a0). %0)=-v,(0), a2l )

Employing the Laplace transform to the system of the equations (12),
(13) and solving it we get

0= % A0 [finle)rFan(t-0)+
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+agely2Fy, (t— 1)t + nagely? [ fyq (0 )Fya (t - 0,
0
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%3(0)= 3 BuaFua(0)+6} ()6 - e+

: (14)
+arff(f)[rf.fzn(‘r)—mfm(f)}‘“on(t—T)d‘ts

where Fy, (t)= - + sin(c.,t + (Pu)’

~a,t —b,t
ane n n

Fia(t)=- A, % A, Do [eq sin(c,t + @5, )— by sin(eyt+ ¢y, )]
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, dy_ (0 dy. (0)> (15)
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- y 18Py, = - hn
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and p, =-a,, py3 =-b, tic, (amI >0,b, > 0) are the roots of the equa-

{lon
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Agn :ach Tl?n‘l’n(o)"—_(pn(o) > Aqn

.

Pn = Aln s 18P, =

p’ +3TYnP +°17:21(1 aTmTl)""aTcl'Yn =0 (16)
Finally the solution of the problem (1)-(4) can be written in the form

Tle, )= 0le,0)+ ST (OW () u0)- 5‘*’3 ),

% i‘l’n(t)wn(r), (t>0, R, <r<R,).
n=1

(17)
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Next, we consider the special case, when the harmonic displacement is
given at the surface of the cylinder and the heat flow equals zero, that is

oT oY

—=0,u=—n=uge " if r=R;. 18
or or J ' .

The solution of the problem (12) leads to the relations

* 1 L { 2 o? 2 1. t
Tn(t)=-5—- €in| Tn — 3 |~ MTNYp€2n £ (19)
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@ 10
3 =(73, __ [yz -—-]-mmz.

It is clear from (19) that T,: =0 if the coupling constant n=0 and
hence T, (t)= 0 since ¢(t)=0. The temperature disturbances can be large

if the value n # 0 is however small and the wave number 2 s close to -
€1
Indeed, let L. Y. (resonance conditions), then we get from the for-
€1
mula (19)
Ty (t)= ey e " 21)

and the amplitude of these vibrations (not depending on 7 ) can reach how-

ever large values.
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