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Abstract. An algorithm is proposed for numerically solving the problem of finding the
maximum load for flat bar systems having a rectangular section of variable height. The material is
elastoplastic; its physical properties are described by the Prandtl diagram. It is assumed that the
compressive o, and tensile o, strength of the material are different. The modulus of elasticity in

tension and compression is the same. The limiting state of a rectangular cross section under the
simultaneous action of a longitudinal force and a bending moment is described. Using the proposed
algorithm, a program was developed for calculating rod systems by the limit equilibrium.

The C++ programming language was used to create a program for the numerical
determination of the ultimate load for rod systems. The finite element method was used as the most
universal to write a module that performs static analysis of the bar system. Its use makes it easy to
design rod systems of arbitrary configuration with arbitrary boundary conditions.

As a test example, a hinged circular arch loaded with a uniformly distributed vertical load is
considered. Analytical dependences are written, which allow to obtain the ultimate load for an arch
of variable section. Examples of calculating the limiting state of the arch and comparing the
ultimate loads with and without longitudinal force are considered. The analytical solution is
compared with the numerical solution found by the author's program. Good convergence of
analytical and numerical solutions is shown.

The proposed algorithm for the numerical calculation of the limit states uses the so-called direct
method for finding the ultimate load. This allows not only to obtain the value of the ultimate load, but
also to establish the order of formation of plastic regions in the sections of the rod system. The
calculation algorithm does not imply the use of iterative processes, which has a positive effect on the
speed of calculations. Within the accepted assumptions, the calculation methodology is accurate.

Keywords: ultimate load, material properties, longitudinal force accounting, hinge-free arch,
numerical solution, calculation program.

Introduction. The theory of calculation of allowable stresses is widely used in the calculations
of the supporting structures of buildings and structures under the action of specified loads. This allows
you to design reliable structures that have some margin of safety. However, the calculation method for
allowable stresses does not allow to identify the margin of safety and determine the maximum load that
the structure can withstand. In [1-4], fundamental theorems were proved and a method of calculating
by limiting equilibrium was substantiated, which allows finding the ultimate load for various
structures. The method is based on the use of the hypothesis of ideal elastic plasticity of the material
and analysis of the limiting state of the structure. The ultimate equilibrium method allows revealing
latent safety margins and designing more economical structures. Using this method allows you to get
analytical dependencies to find the ultimate load for arch systems.

Analysis of recent research. When calculating bar systems using the equilibrium method, as
a rule, only bending moments are taken into account. The influence of longitudinal and transverse
forces is considered insignificant. For frame structures, this is true, but for arch systems, neglect of
longitudinal forces leads to large errors. Modern arched structures, in most cases, have variable
stiffness in order to reduce material consumption. The materials from which arches are built do not
always have equal tensile and compression strengths, for example, concrete, wood, and some
composites. The calculation of the ultimate load for structures made of similar materials requires
the creation of an appropriate design apparatus. The methods available in the literature for
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calculating the ultimate load for arches [5—7] do not take into account the presence of different
tensile strengths of the material under compression and tension.

The purpose of paper. In this paper, we solve the problem of numerically finding the
ultimate load for flat bar systems using the method of ultimate equilibrium. It is assumed that the
rods have a rectangular cross section of variable stiffness and are made of a material with different
tensile and compressive strengths. As an example, considered a circular hinge-free arch. In the
literature known to the author, it was not possible to find studies devoted to calculating the limiting
state of arches of variable cross section with different tensile and compression strengths. Therefore,
in this paper, we propose a method for the numerical and analytical calculation of such arches using
the method of limiting equilibrium. The numerical calculation technique is implemented as a
calculation program.

Materials and methods. For the numerical determination of the ultimate load, the direct method
is used, which was used in [4] to calculate rod systems without taking into account the longitudinal
force. A similar method was used by the author in [8, 9] to calculate the ultimate load while taking into
account the longitudinal force and bending moment for bar systems with elements of constant stiffness.
In this paper, the algorithm [9] is slightly modified and adapted to calculate systems with elements of
variable stiffness. The analytical determination of the ultimate load for the arch is based on the solution
of the linear programming problem [3] with the use of yield conditions.

Research results. To calculate the rod systems by the method of limiting equilibrium, it is
necessary to describe the limiting state of the cross section under the action of longitudinal force
and bending moment.

Considering the limiting state of a rectangular section, the height of which depends on its
coordinate @, we use results, obtained in [9] for rectangle section with constant height. With the
simultaneous action of a longitudinal force and a bending moment, the section strength region is
described by the dependences:

— under compressive longitudinal force:

M, () { N, () J O No(@) oe=0n ®

Mo(a) NOC(a) Oy NOC(a) Oy
— under the action of tensile longitudinal force:
2
M, (@) +( Nb(“)} On Ny () oy —0y 1, @)
Mo(a)| (Ny(a)) o, Ny(a) o

where a — section coordinate; o, — compressive strength; o, — tensile strength; M, (a) —
ultimate moment of section in the absence of longitudinal force.
_bh*(a) oyoy

Mo () 2 o,.to, ’ ®

b,h(e) — section width and height;
No. (), Ny (@) — ultimate compressive and tensile forces in the absence of moment;

Ny, (@) =—o,bh(a); Ny (a)=o,bh(a), 4)
M, (@), N, (a) — limit values of moment and longitudinal force with simultaneous action of

both longitudinal force and moment. M, («) and N, («) are on the border of the cross-section

strength region [8].

Expressions (1) and (2), which are called yield conditions, allow us to write and solve the
problem of finding the ultimate load for flat bar systems with a rectangular cross section.

For the numerical solution of the problem of limit equilibrium, the finite element method was
used. The core system was divided into finite elements of constant stiffness and the yield conditions
(1), or (2) were used to calculate the ultimate forces in each section.
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The idea of the calculation is that while the forces M («) and N(«) fall inside the strength
region, the cross section is in the elastic stage and the relationship between the load and the forces is
linear [8]. On the first stage of calculation, having forces M, () N,(«) from the action of a unit load,

it is easy to calculate the ultimate forces M, («), N,(e) and the ultimate load at which the cross

section passes into the plastic stage. After calculating such a load for each design section, we select the
section for which the load will be minimal. In this section, we install the hinge and take the axial
stiffness equal to zero, that is, remove two bonds. We calculate the values of the forces in all calculated
sections from the obtained ultimate load. If the system has not turned into a mechanism, the calculation
continues. At the second stage, taking into account the efforts found at the first stage, we calculate the
load increment, which transfers the next section of the core system to the plastic stage. The calculation
stops when the system turns into a mechanism. The ultimate load will be the sum of the loads found at
all stages of the calculation. The calculation procedure is quite simple and allows you to trace all the
stages of the gradual transformation of the core system into a mechanism.

Ultimate forces for the section are defined as the intersection point of force vector M(«),

N(e«) with the border of strength region [8]. Thus, ultimate forces M, () and N,(a) are

calculated from the solutions of the system of two equations.
a) At compressed section:

Mb(a)—Ms(a)—kl(a)[Nb(a)— Ns(a)]:0;

Mb(a)|j{ Nb(a)}z.&_ Nb(a)‘O'yc—O'yt 1-0. )
Mo(a)‘ Np. ()| o, Ne(a) o,

where M, («) and N, () — forces in section, obtained on the previous stage of calculation
(on the first stage these forces are equal to zero);

k,(a)=M, (a)/N,(a), where M, (a) and N, («) — forces in section of unit load.

Ultimate compressive force is determined from the expression:

Ny(a) 1
NOC(a) 5—2— 1+k C(a)]+
1 2
+\/{E‘%D+ K (e)k, (05)]} +Wv‘m[kl(a) N, ()M, (a)+M, ()], (6)
where k, ()= Ny, (a)/ M, ().
b) At stretched section:
M, ()M, (a)—kl(a)[Nb (a)—N, (a)] =0;
M, (@)| [Ny(@) [ o Ny(a) o0,
M, (a)‘J{ No (@) | o No(a) on O @
The ultimate tensile force is determined from the expression:
Nb 1 yc
Nm((z)) = o [1+k (a)]+

J{; P okl @]+ 7 @) @] 6
where k, (er) =Ny, (a)/ M (a).

The described calculation procedure is implemented as a calculation program in the C ++

programming language. Since the finite element method was used, the program allows one to perform
the calculation according to the method of limiting equilibrium for arbitrary flat rod systems.
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To test the program, we write an analytical solution to the problem of finding the maximum
load for a hinge-free arch.

Example 1.

Let us consider a circular hinge-free arch of variable section loaded with a uniformly
distributed load (Fig. 1, a). We assume that the moment of inertia of the cross section of the arch
changes according to the law:

|
! (a) B Sir;:a ’ ©)
where . —moment of inertia of the section located on the axis of symmetry of the arch.
With a rectangular cross section, the height of the section will be determined by the formula:
_ hC

h(a)= Tsina (10)
where h. — section height on the axis of symmetry of the arch.
Arch’s cross-section area:

Aer) =i~ L2 (11)
Ysina  sina
where A. =bh. — cross-sectional area on the axis of symmetry of the arch.
Static arch calculation is performed using the force method using the center of elastic weight
(Fig. 1, b). The coordinate of the center of elastic weight is determined by the formula:
R .
= T —2a,+SIN, ). 12
4cosa, ( ° o) (12)
Unknown of the force methods are determined from the system of equations:
o X +4,=0;
O Xy + Ay, =0.
Forces in the main system of the method of forces from single unknowns X,;, X, and of the
given load q:

Yo

(13)

M, =y, —Rsina; N, =-sina;
M,=-1 N,=0; (14)
Mg = —q—zzcosza; N; =—gRcos’x .
a) q b) }
EEEEEEEEERERRRRRRENR !

Yo
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Fig. 1. Calculation model of the arch and main system of force method
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The coefficients of the system of equations:
O 1 2 [ N 2
1

%=[g (@) Rd“g{ EA()

%

y. +R? 1—£C052a0 cosa, — Ry, Z—ozo+lsin2040 L 1—1C082a0 CoSQ;
3 2 2 EA. U 3

Rda =

o a2 a2
S,y = jLRdmj N, Rdazﬁcos%; (15)
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ay M MO ay l\_l NO 3
Ay =j L1 Rda+_[ 19 Rdg =R ﬁcos3a0—5(z—ao+lsin4aoj +
JEI(a) JEA(a) El| 3 gl 2 4
+— aR (z—a0+18|n4a0j,
4EA, 4
% M |\/|O 3
Apy = da+ I _ R cos’a,.
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From the solution of the system of equatlons (13) we find unknown forces:

A A
H=X=—23;M.=X,=-——2, (16)
511 522
We write down the expressions for the moment and longitudinal force in an arbitrary section

of the arch:
2

M ()=~ T —cosiar+ H (y, - Rina) - M

N (o) =—qRcos’a — Hsina . (17)
Having expressions for efforts (17) and plasticity conditions (1), (2), we can formulate the
optimization problem, where the ultimate function is the ultimate load q,, and the project variable

will be the coordinate of the section « , which will go into a plastic state. Since under the action of
a given load all sections of the arch are compressed, condition (1) is used as a plasticity condition.

Values H and M are determined by (16):

0, — min;
M, (a)=- cos a+H (Y, —Rsina)-Mc;
N, ()= —qucos a — Hsing; (18)
2
Mb(“)|_{ Nb(“)} Oy N, () e 7% _q
0(0‘)‘ Noc(@)| oy Ne(a) oy
In view of symmetry o, <a <z /2.
As a numerical example, consider an arch with parameters:
| =20m, f =8m, R=10.25m, o, =0.22131rad, o, =2.92028 rad . Transverse section

bxh. =0.2x0.4m*. Material properties E=2.3-10"kN /m?, o,, =14500kN/ m?,

o, =1000kN / m?.
Problem (18) was solved in EXCEL using the “Solution Search” function. The following
results ~are  obtained: ¢, =6.7656kN/m,  «=0.2213lrad, M, (&) =62.3055kNm,

N, =—76.6001kN . Plastic arises in two supporting sections of the arch. Since the transition of one
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section into a plastic state removes two bonds, the arch turns into a mechanism.
Diagrams of moments and longitudinal forces in the ultimate state are presented in Fig. 2.

Fig. 2. Diagrams of forces in the ultimate state of the arch

Example 2.

Consider the hinge-free arch shown in Fig. 1a. If the longitudinal force is not taken into
account when calculating the ultimate load for the arch, then, taking into account symmetry, the
formation of five plastic joints is necessary for turning the arch into a mechanism. Two plastic
hinges are formed in the supporting sections of the arch, the third on the axis of symmetry of the
arch. To determine the ultimate load and sections in which two more hinges are formed, we write
the system of equations:

H =[0.125q,1* + M, (a5 )~ M, (7 / 2) |/ f;

Gl®  QR® : )
T—TCOS a—H(RSIna—R+f)+MO(aO)+M0(a):O, (19)

+(goR?sina — HR) sin® (&)~ M3 (1 2) /3375 =0.

Having solved the system of equations (19) for the arch with the parameters specified in
example 1, we obtain: q,=5.81088kN /m, o =0.76795rad . Plastic hinges are formed

symmetrically at a distance of 2.627 m from the arch supports. The resulting ultimate load is 16%
less than the ultimate load obtained in Example 1. This indicates that the presence of compressive
longitudinal force and allowance for its influence in the equations of ultimate equilibrium leads to
an increase in ultimate load.

The numerical calculation of the arch from Example 1 leads to the following results: ultimate
load is 6.779kN/m, the supporting sections of the arch go into the plastic state. This result was
obtained by dividing the axis of the arch into 132 finite elements. The obtained ultimate load differs
from that obtained analytically by 0.2%.

Having performed the numerical calculation of the arch from example 2, we obtain

g, =5.8180kN /m, which differs from the analytical calculation by 0.1%. The first two plastic

hinges are formed in the supporting sections of the arch, the next two are symmetrically at a
distance of 2.75 m from the supports, the last is a plastic hinge on the axis of symmetry of the arch.

It should be noted that in the numerical calculation the coincidence of the maximum load with
the load obtained analytically, in the general case, depends on the degree of fragmentation of the
arch into finite elements. But a good agreement of the results can also be achieved with a small
partition if the nodes of the finite element model fall into the sections, where plastic is formed in the
analytical calculation.

Conclusion:

1. The direct method of calculating the limit equilibrium [4, 9] makes it easy to develop an
algorithm for the numerical calculation of bar systems of variable stiffness and implement it in the
form of program code.
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2. The numerical calculation method allows you to establish the sequence of transition of the
sections into a plastic state.

3. Calculations showed good convergence of analytical and numerical results.

4. The presence of compressive longitudinal force and its consideration in solving problems
of ultimate equilibrium leads to an increase in ultimate load in arch systems.
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AHoTanisi. 3amnporoHOBAHO aJTOPUTM YHCEIBHOTO PIMICHHS 3aJayl  3HaXOJKEHHS
I'PaHUYHOIO HABAaHTA)KEHHS I IUIOCKUX CTPMXKHEBHUX CHCTEM, IO MAIOTh NMPSIMOKYTHUHN MEPETUH
3MIHHOI BHUCOTH. Marepianl — NpPYKHO-IUIACTUYHUN, HOro (i3WyHi BIACTHUBOCTI ONHUCYHOTHCS
niarpamoro Ilpanarns. Ilepenbauaerbes, 10 MeXi MIIHOCTI MaTepialy HpU CTHUCHEHHI 1 HpH
pO3TATYBaHHI pi3HI. Moaynb NPYKHOCTI MPH PO3TATYBaHHI 1 CTHCHEHHI OJHaKoBHH. OmnucaHo
IPaHUYHUM CTaH MPSMOKYTHOTO MEPETUHY MPH OAHOYACHIHM i MO310BKHBOI CHMIIM 1 3TUHAJIBHOTO
MOMEHTY. 3 BHKOPHUCTAaHHSIM 3alPONIOHOBAHOTO aJIrOpPUTMYy CKJIaJileHa Mporpama po3paxyHKY
CTPM)KHEBUX CHUCTEM 32 METOJIOM I'PaHUYHOI PIBHOBArH.

JUis CTBOpPEHHsI MpOrpamMH YHMCEIbHOTO BHU3HAYEHHS TPAHUYHOTO HABAaHTAXKEHHS JUIS
CTPUKHEBUX CHCTEM BHKOPHCTOBYBaBCSl MOBa nporpamyBaHHa C++. [l HanucaHHS MOJYJIs, L0
BUKOHYE CTaTHYHHUNA PO3PAaXyHOK CTPUXKHEBOI CHCTEMH, SK HaWOUIbII  yHIBEpCAIbHMIA,
BUKOPHCTOBYBABCS METOJ]l CKiHUEHHX €JEMEHTiB. MOro BHKODHCTAHHS JO03BONSE JIETKO
PO3paxoBYBaTH CTPUIKHEBI CUCTEMHU JOBUIbHOT KOHQITYypallii 3 T0BIIbHUMH IPAHUYHUMHI YMOBaMH.

B sKocTi TecToBOro mNpuUKIaay pO3MNIsIHyTa Oe3IIapHipHa KpyroBa apka, 3aBaHTaKeHa
BEPTUKAIBHUM PIBHOMIPHO-PO3IMOILJIEHUM HAaBaHTAXEHHSIM. 3alKCcaHl aHAIITUYHI 3aJ]1€KHOCTI, 110
J03BOJISIIOTh OTPUMATH TpPaHMYHE HABaHTAXEHHS JUISI apkKu 3MiHHOTO mepepisy. PosrisayTo
MPUKIaad PO3PAaXyHKY TPAHUYHOTO CTaHy apKd 1 MOPIBHSHHS TPAaHUYHHUX HABAaHTa)XXEHb 3
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ypaxyBaHHsIM 1 6e3 ypaxyBaHHS MO30BKHBOI CHJIM. BUKOHAHO MOPIBHAHHS aHATITUYHOTO PILICHHS
3 YHCENbHUM pIIMIEHHSAM, 3HAWICHUM 3a Mporpamoro aptopa. IlokazanHa xopomia 301KHICTH
AQHAITITUYHOTO 1 YMCEIBLHOTO PIllICHb.

Y  3anpornoHOBaHOMY QJITOPUTMI YHCEJIBHOTO PO3PaxXyHKY 3a TPaHUYHUMH CTaHAMHU
BUKOPHUCTOBYETHCSI TaK 3BaHUN NpPSAMUNA METOJ 3HAXO/PKEHHS TI'PaHUYHOTO HaBaHTaXeHHs. Lle
J03BOJISIE HE TUTBKH OTPUMATH 3HAYCHHSI TPAHUYHOTO HABAHTAXKCHHS, aJie 1 BCTAHOBHUTHU IMOPSIOK
YTBOPEHHS IJIACTUYHUX O0JIACTEeH B MEPETHHAX CTPMXKHEBOI CHCTEMH. AJITOPUTM PO3pPaxyHKY He
nepeadavyae BUKOPUCTAHHS ITEpAliiHUX IPOLECIB, 10 MO3UTUBHO TO3HAYAETHCS HA IIBUIAKOCTI
o0unciIeHb. Y MeXax MPUHHATUX NPUITYIICHb METOMKA PO3PAXYHKY € TOUHOIO.

KirouoBi cioBa: rpaHudHe HaBaHTa)XCHHS, BJIACTHBOCTI Marepiany, OONIK TMO310BKHBOI
cwId, OC3IIAPHIPHUX apKa, YHCETbHE PIICHHS, POrpaMa PO3paxyHKY.
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AHHoTanus. [IpenoxkeH anropuT™M YUCICHHOTO PELICHUs 3a/1a4l HAXOXKIEHUS [IPpeaesIbHON
Harpy3ku JJisi IUIOCKUX CTEP’KHEBBIX CHCTEM, MMEIOIIMUX IMPSMOYIOJIbHOE CEYEHHE IEePEMEHHOU
BBICOTHI. MaTepuall — ynpyromnjaacTH4ecKuid, ero pusnueckue cBOMCTBa ONMUCHIBAIOTCS AMArpaMMOn
Hpannrnst. [lpenmonaraercs, 4To Mpejiesbl NPOYHOCTH Marephana HpH CKATHA O, U TpH

pacTskenuu o, pasusie (o, >0,). MOAyb YNIPYroCTH NP PACTSHKEHUU M CHKATHH OJIMHAKOB.

OnucaHo NpeleabHOE COCTOSTHUE NPSIMOYTOJBHOIO CEYEHHs MHpPH OAHOBPEMEHHOM JEHCTBUHU
MPOAOJIBHOW CHibl U u3rubaromero MoMeHTa. C HMCIONBb30BaHUEM MPEUIOKEHHOTO aITOpPHTMA
COCTAaBJICHA IIPOTPAMMa pacyeTa CTEPKHEBBIX CUCTEM MO MPEACIbHOMY PABHOBECHIO.

Jns  co3maHus MpPOrpaMMbl  YUCIECHHOTO ONPENETCHUS MPENEIbHOW Harpy3ku JJis
CTEP)KHEBBIX CHUCTEM HCIIOJIB30BAICA SA3bIK IporpammupoBaHuss C++. [{ns HanucaHus MOIYJs,
BBITIOJIHSIFOIIETO CTAaTHYECKUN pacyeT CTEepP)KHEBOM CHUCTEMBl, KakK HamOoJiee YHUBEPCAIbHBIN,
HCIIOJIb30BAJICA METOJl KOHEUYHBIX 3JIEMEHTOB. Ero MCnosib30BaHue MO3BOJISET JIETKO PACCUUTHIBATH
CTEP>KHEBBIE CHCTEMBI IPOU3BOJIBHOM KOHPUTYPAITUU C POU3BOJILHBIMU TPAHUYHBIMHU YCITIOBUSMH.

B kadecTBe TecTOBOro mpuMepa paccMOTpeHa OecliapHHpHas Kpyropas apka, 3arpyKeHHas
BEPTUKAIBHOW paBHOMEPHO-PACTIPEICTICHHON HArpy3Koi. 3anmucaHbl aHATUTHYECKUE 3aBUCUMOCTH,
MO3BOJISIOIIME MOJYYUTh NPEACIBHYI0 HAarpy3Ky Ul apKHU MEPEMEHHOIo ceueHus. PaccMoTpeHbl
MPUMEPBI pacyeTa MPeAeIbHOr0 COCTOSIHUSA ApKU U CPABHEHUE MPEETbHBIX HArPy30K C YYETOM H
0e3 yuyeTa MpOAOIbHON CHJIBL. BBIOTHEHO CpaBHEHHE AHAIMTUYECKOTO PEIICHUS C YHCICHHBIM
pelIeHreM, HalJIEeHHBIM N0 IIporpaMMe aBTopa. [lokazana xopomasi CXOAUMOCTh AaHATUTHYECKOTO
Y YUCJIEHHOTO PEILIECHUMN.

B npennmokeHHOM anropuTMe UYHCIEHHOTO pacdyeTa MO0 MPENebHbIM  COCTOSHUSM
WCIIONB3YETCS TaK Ha3bIBa€MbIM MPSMOM METOJ HaXOXKIEHUs TMpEAeNbHOM Harpy3ku. ITO
MO3BOJISIET HE TOJIBKO TMOJYYUTh 3HAYEHHE NPEACIbHON HArpy3Ku, HO MU YCTAaHOBUTH MOPSIOK
o0pa3oBaHMs TMIACTUYECKUX OOJACTE B CEUEHUSX CTEPKHEBOM CHUCTEMBI. AJITOPUTM pacueTa He
MPEIoIaracéT MCIOJIb30BAaHUSI WUTEPAMOHHBIX IPOIECCOB, YTO MOJIOKUTEIBHO CKAa3bIBAETCS Ha
CKOpPOCTH BBIUMCIICHHH. B nipenenax npuHATHIX JOMYIIEHUN METOAMKA pACcCU€eTa SIBISETCS TOUHOM.

KuroueBrble ci1oBa: npesiesibHast Harpy3Ka, CBOMCTBA MaTepuaia, y4eT IpOJOJIbHON CHJIBI,
OecapHUpHAs apKa, YHCIEHHOE pellleHne, MporpaMMa pacuera.

Crarts Hagidnura qo penakimii 23.10.2020
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