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ABSTRACT

We have presented in this communication a new solving procedure for Kelvin-Kirchhoff equations,
considering the dynamics of rising the quasi-rigid ellipsoid of rotation in an ideal incompressible fluid
(up to the surface), assuming additionally the dynamical symmetry of rotation for the rising body,
I 4 == ’2.

Fundamental law of angular momentum conservation has been used for the aforementioned solving
procedure. The system of Euler equations for dynamics of non-rigid ellipsoid rotation has been explored
in regard to the existence of an analytic way of presentation for the approximated solution (where we
suppose that components of fluid's torque vector {T;} are approximately proportional to the appropriate
components of angular velocity {£2;}). The results of calculations for the components of angular velocity
{£2;} should then be used for solving momentum equation of Kelvin-Kirchhoff system. Thus, the full
system of equations of Kelvin-Kirchhoff problem has been explored with respect to the existence of
an analytic way of presentation of the general solution.

The last but not least, we have pointed out the 1-st integral of Kelvin-Kirchhoff system under
the aforesaid additional assumption for fluid's torque vector {T;} when {};} = const (but without the

additional restriction of dynamical symmetry onto the form of the rising body, I = b).

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction, equations of motion

Kelvin-Kirchhoff equations describe the dynamics of rigid
body motion in an ideal fluid [1,2], expressing the conservation
of lingar and angular momentum for the coupled fluid-to-body
interagtion problem (and vice versa). Even in such simplified
ideal formulation (excepting motions of e.g. the elastic non-rigid
bodies in a viscous fluid) this classical problem of mechanics
has not, nevertheless, been clearly solved up to the last decade;
meanwhile, various approaches to the aforesaid problem have
been attracting a lot of best minds in mechanics during last
300 years.

One of the famous scientists in the field of physics, mechanics
and astronomy, Sir Isaac Newton observed variability of these
phenomena are intriguing; the variability observed in the trajec-
tories during falling or ascending of particles (or of bodies) can be
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divided into, preferably, 3 classes of motions (along with switch-
ing between them): zigzagging, helical spiral motion, and the
chaotic trembling or regime of oscillations. Also, there are a larger
amount of recent works, concerning significant achievements
with respect to solution of this problem, such comprehensive
researches should be mentioned accordingly [3-6] (in [6] the
special case of particles rising in a viscous fluid was considered).

Most of researchers have come to a reasonable conclusion
regarding a key importance of the two governing parameters
for adequate describing the dynamics of quasi-rigid ellipsoidal or
spherical body’s motion in an ideal fluid: the quasi-rigid particle’s
density p, relative to the density of fluid pr (I" = pp/pp, 1" < 1),
and its Galileo number Ga s%,/g D3(1 — I')(g is the acceleration
due to gravity, D is the ellipsoidal particle rotational diameter,
and v is the kinematic viscosity of the fluid in the viscous Stokes
boundary layer on the boundaries of the particle). In [3] the
additional governing parameter has been taken into consideration
by researchers, namely, the modulating a quasi-spherical particle's
moment of inertia (Mol). Indeed, non-uniform distribution of in-
ertia properties inside the rigid sphere due to variations of density
of the quasi-rigid particle (inside its boundaries) would be causing



