БЕЗУСАДОЧНЫЕ ЩЕЛОЧНЫЕ ЦЕМЕНТЫ

Кривенко П.В., д.т.н., проф., **Вознюк Г.В.,**к.т.н., с.н.с., **Гончарова А.М.,** асп.

Киевский национальный университет строительства и архитектуры. Украина

ВВЕДЕНИЕ

Традиционные цементы при твердении характеризуются высокими усадочными деформациями вследствие высыхания и уплотнения коллоидальных продуктов их гидратации. Величина усадочных деформаций зависит от вида и состава цемента. В ряде случаев, когда усадочные деформации недопустимы (устройства торкретных болтов, гидроизоляционные покрытия на трубах и подземных сооружениях, плотные стыки в сборных бетонных и железобетонных конструкциях, заделка трещин, омоноличивание и усиления конструкций и т.д.) необходимо применять безусадочные цементы.

Безусадочные цементы при твердении должны не только компенсировать усадку бетона, но и достигать такого расширения, чтобы оно в течение длительного периода придавало изделию необходимое напряженное состояние [1].

Линейное расширение для безусадочных цементов находится в пределах 0,01...0,1% (0,1...1 мм/м) [2].

На сегодняшний день известны составы безусадочных цементов на основе портландцемента, глиноземистого цемента и гипса, в которых факторами, способствующими расширению, является: образование эттрингита или гидроксида кальция [3-14]. К основным недостаткам таких цементов можно отнести: сложность и высокая энергоемкость технологии производства, высокая стоимость сырьевых материалов, сложность регулирования деформации усадки-расширения при эксплуатации в различных условиях, а также низкая долговечность [1].

К недостаткам цементов, эффект расширения, которых основан на образовании гидроксида кальция, относится низкая стойкость к воздействию различных агрессивных сред, а также невысокие физикомеханические свойства [1].

Ранее предложенные безусадочные цементы на основе шлакощелочного вяжущего обладают высокими физико-

механическими и строительно-техническими свойствами, но они характеризуются высокой сложностью технологического процесса получения расширяющейся добавки, что связано с высокой температурой обжига и является серьёзным недостатком [1].

Поскольку существующие безусадочные цементы имеют ряд вышеуказанных недостатков, актуальной научной и практической задачей является разработка эффективных, недорогих, низкоэнергоемких безусадочных щелочных вяжущих.

СЫРЬЕВЫЕ МАТЕРИАЛЫ И МЕТОДИКА ИССЛЕДОВНИЯ

В качестве основы для безусадочных щелочных цементов использовали молотый доменный гранулированный шлак (ДСТУ Б В.2.7-261:2011) с модулем основности Мо=1,15 и поверхностью $S_{v\pi}$ =4500±200 см²/г по Блейну. В качестве щелочного (ГОСТ 5100), компонента использовали Na₂CO₃ как лигносульфонат пластифицирующую добавку натрия "Borresperse Na" (Cas 8061-51-6).

регулирования деформаций Для усадки-расширения искусственного Са-содержащей камня качестве добавки (ДСТУ Б В.2.7-90-99). использовали Ca(OH)₂ качестве алюмосиликатных добавок – золу-унос Ладыжинской ТЕС и метакаолин (ТУ У В.2.7-16403272.005-99). В качестве сульфатных добавок использовали – Na₂SO₄ (ГОСТ 4166) и ангидрит, полученный путем обжига гипсового камня при температуре 550 °C.

Как состав сравнения использовали глиноземистый цемент марки ГЦ-40 (ДСТУ Б В.2.7-82-99), который при твердении воздушно-сухих условиях характеризуется в 3-5 раза более низкой усадкой, чем обычный портландцемент. В качестве основного состава щелочных цементов использовался ЛЦЕМ-1 марки М400 (ДСТУ Б В.2.7-181:2009), в который вводили различные добавки[15].

Химический состав исходных материалов представлен в таблице 1.

Изучение изменения значений усадки-расширения искусственного камня проводили на образцах—призмах размером 160х40х40 мм, которые изготавливали из вяжущих с такой водопотребностью, которая обеспечивала тесто нормальной густоты. Образцы изготавливали по методике Гипроцемента, согласно которой через двое суток после затворения их извлекали из форм, маркировали и тотчас же помещали в воду на 5 суток с температурой 20+2°С [16]. После этого образцы хранились в эксикаторе при температуре 22+1°С

и постоянной относительной влажности воздуха 60±5%, которую

обеспечивали пересыщенным солевым раствором NH₄NO₃ (ГОСТ-285). За начальную точку деформации усадки-расширения принимали показания на 2-е сутки после затворения вяжущего.

Таблица 1- Химический состав исходных материалов

	Содержание оксидов, мас. %.				
Состав основных оксидов	гранулированный доменный шлак	зола- унос	глинозе- мистый цемент	метакаолин	
SiO ₂	38,20	50,94	7-12	53,67	
SO ₃	1,15	-	-	0,14	
MgO	4,58	1,98	1-1,5	сл.	
$A1_2O_3$	4,60	24,56	45-60	43,61	
MnO	0,81	0,03	-	-	
CaO	48,50	2,86	38-42	0,52	
FeO	1,65	-	0,5-1	0,77	
Na ₂ O	0,45	0,69	-	0,25	
K ₂ O	0,34	2,69	-	0,75	
TiO ₂	-	0,94	0,3-0,8	0,74	
P_2O_5	-	0,02	-	-	

РЕЗУЛЬТАТЫ

Составы изучаемых систем безусадочных цементов представлены в таблине 2.

Таблица 2 – Составы безусадочных цементов

	Составы цементов, %						
Тип цемента	гранулированый доменный шлак	Na ₂ CO ₃	Na ₂ SO ₄	CaSO ₄	Ca(OH) ₂	мета каолин	зола-унос
ЛЦЕМ-1-1	67	5	5	5	3	•	15
ЛЦЕМ-1-2	72	5	5	5	3	10	-
ЛЦЕМ-1-3	82	5	5	5	3	-	-
Составы сравнения							
ЛЦЕМ-1	95	5	-	-	-		-

Результаты значений усадки – расширения искусственного камня после твердения в комбинированных условиях хранения представлены на рис. 1.

Рисунок 2 - Результаты значений усадки – расширения искусственного камня в зависимости от состава цемента, представленных в таблице 2.

Как видно из представленных результатов контрольный состав щелочного цемента ЛЦЕМ-1 характеризуется усадкой 1,1 мм/м. Введение в состав щелочного цемента ЛЦЕМ-1-3 ускорителей твердения (кальциевой и сульфатных добавок), приводит к увеличению усадочных деформаций искусственного камня до 5 мм/м, что можно объяснить образованием низкоосновных гидросиликатов кальция, который имеет более плотную структуру камня (2,9 г/см³), чем исхолные компоненты шелочного цемента. Ввеление в состав щелочного цемента вместе с кальциевыми и сульфатными добавками дополнительно алюмосиликатных добавок, приводит к значительному снижению усадочных деформаций искусственного камня (составы ЛЦЕМ-1-1 и ЛЦЕМ-1-2). Этот эффект можно объяснить образованием структуре камня алюмосиликатов, которые гидросиликатов кальция имеют меньшую плотность (2,76 г/см³). Показатели расширения щелочного цемента ЛЦЕМ-1-2, в состав

которого вводили алюмосиликатную добавку - метакаолин, превышают показатели расширения для глиноземистого цемента.

<u>Физико-механические характеристики</u> цементного камня твердения в комбинированных условиях представлены в таблице 3.

Тип цемента	Прочность при сжатии, МПа, на				
	2 сутки	7 сутки	28 сутки		
ЛЦЕМ-1-1	19	29	42		
ЛЦЕМ-1-2	10	18	38		
ЛЦЕМ-1-3	12	17	23		
ЛЦЕМ-1	22	34	39		
Глиноз. цем.	28	39	40		

Таблица 2 – Физико-механические свойства искусственного камня

Анализ результатов, представленных в табл. 2 показывает, что полученные щелочные цементы состава ЛЦЕМ-1-1, ЛЦЕМ-1-2 характеризуются низкими значениями усадки или ее отсутствием и при этом имеют высокие прочностные свойства, не уступающие глиноземистому цементу и щелочному цементу марки ЛЦЕМ 1-400.

ВЫВОЛЫ

На основе полученных результатов показано, что введение алюмосиликатных добавок в состав щелочного цемента способствует снижению усадочных деформаций искусственного камня, очевидно, за счет снижения в фазовом составе продуктов гидротации количества СSH(В) и увеличения алюмосиликатных новообразований. Полученные цементы состава ЛЦЕМ-1-1 и ЛЦЕМ-1-2 характеризуются не только отсутствием усадочных деформаций, но и высокими физикомеханическими свойствами, а также для их производства не требуется сложных и энергоемких технологических приемов и использования дорогостоящих сырьевых материалов.

Summary

Based on the results shown that the introduction of additives into the aluminosilicate alkali cement reduces shrinkage artificial stone, apparently due to a decrease in the amount of the phase composition of CSH(B) and an increase in neoplasms aluminosilicate. The cement

LSEM-1-1 and LSEM 1-2 characterized not only by the lack of shrinkage strain, but high physical and mechanical properties as well as for their production does not require complex and energy-intensive processing methods and the use of expensive raw materials.

Литература

- 1. Негматов 3. Ю. Безусадочные и расширяющиеся шлакощелочные вяжущие и бетоны на их основе: автореф. дис.. канд. техн. наук: спец. 05.23.05.—"Строительные материалы и изделия" / Негматов 3. Ю.-Киев 1995.-20 с.
- 2. Александр Георгиевич Домокеев Строительные материалы. М.: Высшая школа, 1989, 494с.
- 3. Кравченко И.В. Расширяющийся цемент. М.: Стройиздат, 1962. 164 с.
- 4. Будников П.П. Сульфоалюминат кальция как положительный фактор при получении расширяющегося цемента/ П.П. Будников, З.С. Косырева // ДАН СССР. М:. 1948. т. 61. С. 621.
- 5. Михайлов В.В., Юдович Э.З., Попов А.Н. Сборник «Водонепроницаемый расширяю-щейся цемент и его применение в строительстве». Госстройнздат, 1951.
- 6. Кузнецова Т.В. Алюминатные и сульфоалюминатные цементы/ Т.В. Кузнецова. М.: Стройиздат, 1986. С. 208.
- 7. Теория цемента / Под ред. А. А. Пащенко. К.: Будівельник, 1991, —168 с.
- 8. Мчедлов-Петросян О.П., Филатов Л.Г. Расширяющиеся составы на основе портландцемента. М.: Стройиздат, 1965. 139 с.
- 9. Шейкин А.Е., Якуб Т.Ю. Безусадочный портландцемент. М.: Стройиздат, 1966.- 103 с.
- 10. Кутателадзе К.С., Габададзе Т.Г., Нергадзе Н.Г. Алунитовые безусадочные, расширяющиеся и напрягающие цементы. Шестой международный конгресс по химии цемента. Том III Цементы и их свойства. Под общ.ред. Болдырева А.С. М.: Стройиздат, 1976.- 355 с.
- 11. H. Lossier"Cements with controlled expansion and their applications to pre-stressed concrete", The Structural Engineer, 1946. 24, No 10, pp 505-534.
- 12. Aroni, Samuel, M. Polivka, B. Bresler Expansive Cements and Expanding Concrete. California 1966, lg. 8 vo., iv, pp. 74. ReportNo. 66-7.
- 13. Негматов З.Ю., Султансв А.А., Кривенко П.В. Физико-химические основы твердения расширяющихся и напрягающих цементов // Научные исследование в области архитектуры, организации и планирования строительства: Сб. науч. статей.-Самарканд, 1993.- С. 44-48.

- 14. Кривенко П.В. Специальные шлакощелочные цементы. Киев: Строитель, 1992. 192 с.
- 15. НАЦІОНАЛЬНИЙ СТАНДАРТ УКРАЇНИ ДСТУ Б В.2.7-181:2009 Будівельні матеріали. ЦЕМЕНТИ ЛУЖНІ. Технічні умови.
- 16. БУТТ Ю.М. Практикум по технологии вяжущих веществ и изделий из них.- Москва: Государственное издательство литературы по строительным материалам, 1953.-463с.