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 We have presented in this communication a new solving procedure for the dynamics of 

non-rigid asteroid rotation, considering the final spin state of rotation for a small celestial 

body (asteroid). The last condition means the ultimate absence of the applied external 

torques (including short-term effect from torques during collisions, long-term YORP 

effect, etc.). 

 Fundamental law of angular momentum conservation has been used for the 

aforementioned solving procedure.  The system of Euler equations for dynamics of non-

rigid asteroid rotation has been explored with regard to the existence of an analytic way of 

presentation of the approximated solution. 

 Despite of various perturbations (such as collisions, YORP effect) which destabilize 

the rotation of asteroid via deviating from the current spin state, the inelastic (mainly, 

tidal) dissipation reduces kinetic energy of asteroid. So, evolution of the spinning asteroid 

should be resulting by the rotation about maximal-inertia axis with the proper spin state 

corresponding to minimal energy with a fixed angular momentum. 

 Basing on the aforesaid assumption (component K 1 is supposed to be fluctuating near 

the given appropriate constant of the fixed angular momentum), we have obtained that 2-

nd component K 2 is the solution of appropriate Riccati ordinary differential equation of 1-

st order, whereas component K 3 should be determined via expression for K 2. 
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1. Introduction, the system of equations. 

 

  The main motivation of the current research is the analytical exploration of the 

dynamics of asteroid rotation when it moves in elliptic orbit through Space. In our 

previous research [1], we have explored the regimes of rigid asteroid rotation under the 

additional influence of YORP-effect. Let us note that assumption of asteroid rotating as 

rigid body means that distances between various points inside the rigid body should be 

preferably constant or should be elongated negligibly. 

We will consider here regime of rotation of small celestial bodies (asteroids less than < 

10 km in diameter) which differ from the rigid body in a sufficient extent. It means that 

distances between various points inside the asteroid can not be considered as being 

elongated negligibly. Meanwhile, only circa 20% of all the registered asteroids (near-Earth 

objects in NASA data base) are recognized as to be close to the rigid body approximation. 

For example, we can provide the comparison with to the actual/observed data for nonrigid 

asteroids, which is available in the modern research with respect to the rubble pile 

asteroids [2]. 

 

 It is very important to create the adequate physical model along with the mathematical 

model of the aforementioned asteroid’s spinning phenomenon with the main aim of the 

clarifying the results of data of astrometric observations. Indeed, if regime of rotation of 

asteroid is suddenly changing, we could observe even physical disintegration of asteroids 

(or self-destruction under the influence of sudden acceleration during a fast rotation [3]). 

  It is also worth to note that fundamental law of angular momentum conservation should 

be valid even during the non-rigid regime of asteroid’s rotation [4]. Namely, theorem of 

conservation of angular momentum describes rotation of asteroid in a frame of reference 

fixed in the rotating body [5] (I i ≠ 0): 

  

where K


 = { I i  Ω i }, whereas 


 = { Ω i } (here Ω i are the components of angular 

velocity vector along the principal axes, i = 1, 2, 3), I i are the principal moments of 

inertia, and M


= )(tM


 is the total sum of applied external torques (including short-term 

effect from torques during collisions, long-term YORP effect [1], [6], etc.). 
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  Let us especially empasize that we will consider here principal moments of inertia to be 

variable (time-dependent, I i = I i (t)), in general case; e.g., components of inertia tensor of 

asteroid may be changed during collisions [4]. Indeed, we should take into consideration 

the possible changes in its form, along with the decreasing of the mass via partial physical 

disintegration of asteroids during collisions or even via self-destruction due to the regime 

of fast rotation [1]. Despite of various perturbations (such as collisions, YORP effect) 

which destabilize the rotation of asteroid via deviating from the current spin state, the 

inelastic (mainly, tidal) dissipation [7-9] reduces kinetic energy of asteroid. 

 It means that evolution of the spinning asteroid should be resulting by the rotation 

about maximal-inertia axis [7] with the proper spin state corresponding to minimal energy 

with a fixed angular momentum. 

 

 We will consider in (1) only such the aforesaid final dynamical state of asteroid 

rotation (which is fluctuating near the given appropriate constant of the fixed angular 

momentum). Asteroid is supposed to be moving along its orbit far from the close 

influences of additional gravitational forces from planet of mass m planet or far from Hill 

sphere [1] (motion of asteroid is determined by equations of ER3BP with primaries m planet 

and M Sun, m planet < M Sun): 

 

where a p is semimajor axis of the planet. 

 

 Let us also assume (as first approximation) that all external torques, associated with 

inertial forces, tides, YORP effect are neglected in (1) (i.e., M

0


 in (1)). 

 According to the results of [7], inelastic (mainly tidal) dissipation, which is reducing 

kinetic energy, yields evolution of spin towards rotation about maximal-inertia axis I 1 

with rate of rotation Ω 1 (for definiteness, I 1 > I 2 > I 3); it means: 

 

  {Ω 2, Ω 3} << Ω 1      {Ω 2, Ω 3}  0                     (2) 

 

 The last but not least, let us additionally note that the spatial ER3BP is not 

conservative, and no integrals of motion are known [10] (including total angular 

momentum, which combines the expressions in (1) and orbital angular momentum). 
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2. Analytical exploring of the system of equations (1). 

 

 

 First of all, we should note that (1) is the system of 3 nonlinear differential equations 

with respect to K


 = { I i  Ω i } (with all coefficients depending on time t): 

 

  

 

  Let us multiply 1-st equation of system (3) or (4) on (K 1 / I 1), the 2-nd Eq. on (K 2 / I 2), 

3-rd on (K 3 / I 3); then if we sum all the resulting equations of the system above, we should 

obtain 
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3. Solving procedure and the approximated solution for Eqns. (1). 

 

 

 According to the assumption (2) above, in (1) we will consider only the final 

dynamical state of asteroid rotation (which is fluctuating near the given appropriate 

constant of the fixed angular momentum, K 1  const). It means that equation (5) can be 

transformed to the form below 

 

 Let us note that in case K 1  const, 1-st equation of system (4) should be satisfied 

accordingly at first approximation (if we take into account assumption (2) for the right 

part of 1-st equation of system (4), where Ω 2 = (K 2 / I 2), Ω 3 = (K 3 / I 3), {Ω 2, Ω 3}  0). 

 

 As for the 2-nd equation of system (4), we obtain (here below K 1  const): 

 

 

 Now, as for the 3-rd equation of system (4), let us substitute expression for K 3  from 

the 2-nd Eqn. of (4) the expression for derivative in the left part; it yields as below 

 

 

where equation (8) for the dynamics of component K 2 = I 2Ω 2 could be transformed by 

change of variables y = (K 2/ K 2) to the Riccati ODE of 1-st order [1]. 
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Discussion 

 

 

  We have explored here the dynamics of non-rigid asteroid rotation, considering the 

final spin state of rotation for a small celestial body (asteroid). Non-rigid character of 

asteroid rotation means that principal moments of inertia are variable (time-dependent, I i 

= I i (t), i = 1, 2, 3). 

 Fundamental law of angular momentum K


 = { I i  Ω i } conservation (which should be 

valid even during the non-rigid regime of asteroid’s rotation) has been used at obtaining 

the analytical algorithm for solving. The proper approximate solution has been obtained 

which is presented below: 

 

- component K 1 = I 1 (t)Ω 1 (t) is supposed to be fluctuating near the given appropriate 

constant of the fixed angular momentum, K 1  const; 

 

- component K 2 = I 2 (t)Ω 2 (t) is the solution of the appropriate Riccati ODE (8): 

 

- component K 3 = I 3 (t)Ω 3 (t) is determined in (7) via expression for K 2: 

 

 We should additionally note that for reason of a special character of the solutions of 

Riccati-type ODEs, there exists a possibility for sudden jumping of magnitude of the 

solution at some meaning of time-parameter t [11-15]. 

  

 Mathematical procedure of presenting the components of angular velocity via Euler 

angles [16] (and Wisdom angles [17]) has been demonstrated at the Appendix in [1]. 
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Conclusion 

 

 

 We have presented in this communication a new solving procedure for the dynamics of 

non-rigid asteroid rotation, considering the final spin state of rotation for a small celestial 

body (asteroid). The last condition means the ultimate absence of the applied external 

torques (including short-term effect from torques during collisions, long-term YORP 

effect, etc.). 

 Fundamental law of angular momentum conservation has been used for the 

aforementioned solving procedure.  The system of Euler equations for dynamics of non-

rigid asteroid rotation has been explored with regard to the existence of an analytic way of 

presentation of the approximated solution. 

 Despite of various perturbations (such as collisions, YORP effect) which destabilize 

the rotation of asteroid via deviating from the current spin state, the inelastic (mainly, 

tidal) dissipation reduces kinetic energy of asteroid. So, evolution of the spinning asteroid 

should be resulting by the rotation about maximal-inertia axis with the proper spin state 

corresponding to minimal energy with a fixed angular momentum. 

 Basing on the aforesaid assumption (component K 1 is supposed to be fluctuating near 

the given appropriate constant of the fixed angular momentum), we have obtained that 2-

nd component K 2 is the solution of the appropriate Riccati ordinary differential equation 

of 1-st order, whereas component K 3 should be determined via expression for K 2. 

 There is additional condition for obtaining such approximated solution (I 1 > I 2 ≥ I 3): 

 

   {Ω 2, Ω 3} << Ω 1 , 

 

 where Ω i are the components of angular velocity vector along the principal axes (i = 

1,2,3), I i are the principal moments of inertia. 

 

 The last but not least, we can obtain one additional class of approximated solutions of 

system (1) with non-zero external applied torques )(tM


 ≠ 0


; mathematical procedure of 

obtaining such the additional solution has been moved to an Appendix, with only the 

resulting formulae left in the main text (here below K 1  const): 
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where equations (10)-(11) for the dynamics of components of angular momentum K 2, K 3 

(K 2 = I 2Ω 2, K 3 = I 3Ω 3) are the Abel ODEs of 1-st order of the 2-nd kind [13]. 

 Also, the remarkable articles [18-20] should be cited, which concern the problem 

under consideration. 

 

 

 

Appendix (additional class of approximated solutions of system (1)). 

 

 

 Let us obtain the additional class of approximated solutions of system (1). We consider 

the final dynamical state of asteroid rotation (which is fluctuating near the given 

appropriate constant of the fixed angular momentum, K 1  const) for which we assume 

)(tM


 ≠ 0


. 

 Then 1-st equation of system (1) should be satisfied accordingly (at first 

approximation) under the appropriate condition below: 

  

 Meanwhile, there is no need to take into account assumption (2) for the right part of 1-

st equation of system (1) in this case. 

 

 As for the 2-nd and 3-rd equations of system (1), we obtain (here below K 1  const): 
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where equations (10)-(11) for the dynamics of components of angular momentum K 2, K 3 

(K 2 = I 2Ω 2, K 3 = I 3Ω 3) are the Abel ODEs of 1-st order of the 2-nd kind [13]. These 

Eqns. can be transformed by the appropriate change of variables K 3 = 1/u to the Abel 

ODEs of the 1-st kind (of Riccati type). 

 Accordingly, for the aforesaid reason of a special character of the solutions of Riccati-

type ODEs (see Discussion), there exists a possibility for sudden jumping of magnitude of 

the solution at definite meaning of time-parameter t [11-15]. 

In the physical sense, such jumping of Riccati-type solutions of Eqn. (8) can be associated 

with the effect of sudden acceleration/deceleration of angular velocity’s component Ω 2 at 

definite moment of time t 0 (or with the alternative effect of crucial changes in the 

principal moment of inertia I 2 (t) of asteroid during the process of rotation). 
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