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EVOLUTION OF ROTATION
OF A NEARLY DYNAMICALLY SPHERICAL TRIAXIAL SATELLITE
UNDER THE ACTION OF LIGHT PRESSURE TORQUES

L. D. Akulenko and D. D. Leshchenko

The motion of a satellite relative to its center of mass under the action of torques of various (gravitational, = -
magnetic. light pressure, etc.) nature has been investigated in numerous papers (see [ 1-6] and the bibliography -
therein). The estimate [1] of the perturbing torques shows that at heights exceeding 35,000—40,000 km above
the Earth surface the light pressure torques substantially influence spacecraft motion. Using the averaging-
method, we investigate the attitude motion due to light pressure torques of a nearly dynamically spherical
spacecraft whose shape is a surface of revolution. This case is of interest both theoretically and in applications.

1. BASIC ASSUMPTIONS AND STATEMENT OF THE PROBLEM

Consider the motion of a spacecraft relative to its center of mass under the action of the light pressure torques.
We introduce three right-handed Cartesian coordinate frames with origins at the satellite center of mass [1, 2]. The
coordinate frame O.XY Z moves translationaily along the Sun orbit together with the satellite; the Y -axis is normal
to the orbit plane, the Z-axis is parallel to the position vector of the orbit perihelion, and the X -axis is parallel to
the velocity of the satellite center of mass at the perihelion. We describe the orientation of the angular momentum
vector L in‘the reference frame O.XY Z by the angles p and ¢ as shown in (1, 2, 4, 6]. To construct the reference
frame OL, L, L associated with the vector L. in the plane OY L we draw an axis L; perpendicular to the vector L
and forming an obtuse angle with the Y -axis. The L,-axis completes the L- and L,-axes to a right-handed coordinate
[rame. The axes of the satellite-connected coordinate frame Ozyz coincide with the principal central axes of inertia
of the satellite. We describe the relative position of the principal central axes of inertia and the axes L, L, and L, by
Euler’s angles @, v, and 8 [1, 2. 4, 6]. The direction cosines a;; of the Oz-, Oy-, and Oz-axes in the coordinate frame
OL, L, L can be expressed via the Euler angles ¢, . and 8 according to the well-known formulas [1].

4 We assume that the spacecraft moves around the Sun along an elliptic orbit and the moments of all forces, apart
frefn the light pressure forces, are negligible. Moreover, we assume that the satellite surface is a surface of revolution,
with the unit vector k of the symmetry axis being directed along the Oz-axis. As is shown in [1, 3, 5], in this case the
light pressure torque M acting on the satellite is given by

5
3

M=ac(ss)—§i—e,xk. (1.1)

where

R‘z) ' . Ey R%
ac(Es)? =pcS(&s)zp(es), pe = —
Here e, is the unit vector codirected with the position vector of the satellite center of mass; £, is the angle between e,
and k, so that |e; X k| = sin&;; R is the current distance from the Sun center to the satellite center of mass: Ry is some
fixed value of R. for example, at the initial instant: a.(s;) is the light pressure torque coefficient; S is the shadow area

on the piane normal to the flux; = is the distance between the center of mass and the pressure center: p, is the light
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pressure at the distance R from the Sun center: ¢ is the light velocity: Ep is the light energy flux at the distance R,
from the Sun center. If Ry is the Earth orbit radius, then pg = 4.64 - 1079 N/m?.

We assume in addition that a. = a.(cose;) [1] and approximate the function a. by polynomials in cose;. The
light pressure torques have a force function that depends only on the orientation of the symmetry axis of the body [1].
Let us represent the force function a.(cose€,) in the form

Ay = Age + 2@y COSEs. (1.2)

If the force function exists, then the equations of the satellite perturbed motion in the variables L, p. o. . . and 4
have the form (2, 4]

L, W wpar U

Lsinp 0p ' Lsinp Oc L ov’ ov'’
9=Lsin05in¢cosw<%—%>—ﬁ;g—g*—#—g%, =
u'1=L<S“j¢+L;’i>—%(%%cotp+%%cot9>.

The force function U depends on time ¢ via the true anomaly v(¢) and on the direction cosines a3, Ji, and 3 of the
Oz-axis in the coordinate frame O XY Z; thus, U = U(v(t), a3, 33, 73)-
System (1.3) must be completed by the equation

.

Ov  (l+ecosv)? 2 k(1 —e2)3
—a? = W&do, where Wwo = —ﬁ = —P—,j——, (1.4)

describing the evolution of the true anomaly in time. Here wg is the mean angular velocity of the center-of-mass motion
along the elliptic orbit; Ty is the period of the satellite revolution; e and P are, respectively, the eccentricity and the
focal parameter of the orbit; « is the product of the universal gravitational constant by the Sun mass.

The torque in Eq. (1.1) corresponds to the force function

2
U(coss,)=—%/ac(cosas) d(cos&s).

Consider the expression (1.2) for a.(cos¢;). In this case the force function has the form

2
U(cosey) =—7;R—g-(aoc COSE; + @) COS® &), (1.5)

where cos €, = y3 cos v + a3 sin v and a3 and 3 are expressed via p, 7, 6, and ¥ by the well-known formulas [1].
Suppose that the satellite principal central moments of inertia are nearly the same and can be represented in the
form

A=Jy+ed, B=Jy+:=B, C=Jy+cC', (1.6)

where ¢ is a small parameter (0 < ¢ < 1). Assume in addition that aoc ~ < and a;. ~ &, that is, the light pressure
torques and the gyroscopic torques are both of the order of . It follows from (1.5) that U ~ z. We investigate the
solution of system (1.3), (1.4) for small ¢ on a large time interval t ~ z~'. The error of the averaged solution for the
slow variables is O(g) on the time interval on which the body performs ~ =~' revolutions. The averaging over ¥ and v
is performed independently, just as for the nonresonance cases [2].

2. THE AVERAGING SCHEME AND THE CONSTRUCTION
OF THE FIRST APPROXIMATION SYSTEM

Consider the unperturbed motion (¢ = 0). In this case equations (1.3) and (1.4) describe the motion of a spherically
symmetric body, and the light pressure torque (1.1) is zero. In this case system (1.3) implies that o, p, L. 8. and - are
constant, whereas

) = — 1t + Wy, o = const, . (2:1)
. '-]O
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which corresponds to the uniform rotation of the satellite about the angular momentum vector L. which moves
translationally. For small ¢ # 0, the variables a. p, L. 6. and ¢ are slow variables, and w and v are fast variables in
the system of seven equations (1.3) and (1.4), provided that relations (1.6) hold. To obtain the solution in the ﬁr§t
approximation, it suffices to average the right-hand sides of Egs. (1.3) in which v is the solution of Eq. (1.4) and v is
defined in (2.1). We assume that the frequencies wo and L/ Jo satisfy the condition mwo + nL/Jo # 0 for any integer
m and n. As is shown in 2}, under this assumption the averaging with respect to time can be replaced by independent
averaging with respect to ¥ and v, since these variables are functions of t. With allowance for (1.4), the time averaging
of functions of v is reduced to the averaging with respect to v as follows:

T 2k (1 _e2y3/2 s
Mt{f(u)}=71_;/0 f(u)dt:%/; i_‘_il__f.(i’ldl,:(l_e-)’/-.uu{—ﬂ)—-—}. (2.2)

(1 +ecosv)? (1 +ecosv)?

Using the well-known expressions for the direction cosines a1, 31, and v3 of the Oz-axis with respect to the
coordinate frame O XY Z [1]. we obtain the average of the force function over ¥:

2

Uy = —a‘c—gil L(l ~ % sin” 9) sin” pcos:(a' -v)+ l: sin’ 9]. (2.3)

On averaging over v according to (2.2) with allowance for the equation of motion of the satellite center of mass
along an elliptic orbit R = P(1 + ecos v)~!, the force function acquires the form

2
Up = —%(l - 62)3/20.1,:%%- [(l - -3— sin® 9) sin® p+sin2 9]. (2.4)

Calculating the partial derivatives 9Us/8p and 8L/ 96 and taking into account the identities 9Us /00 = 8Uo/0v =
0Uo/0¢ = 0, we arrive at the first approximation system for the slow variables in the form

2
LP2

, . . A= 11
& =-(1-e"a (1-3sin*6)cosp, =0, L=0 9=Lsm95m<pcoscp(——-—>,

4 B
1 (oo 1 2.4 - 2 5
Q:cos(){[(.é-_ Ln{_*?_ _C_O_SB_”.> -Q1 —e-)B/-a,c%(l --i—sin‘p)}.

Note that the coefficient ao. disappears on averaging. Now we must study system (2.5). The vector of angular
momentum remains constant in magnitude and inclined at a constant angle with respect to the normal to the orbit plane.

Consider Egs. (2.5) for 4 and ¢. They describe the motion of the vector L of the angular momentum relative to
the body.
o :

(2.5

B

3. EVOLUTION OF THE RIGID BODY ROTATIONS

3.1. Analytical investigation. Equations (2.5) for 8 and ¢ in the slow time ¢ can be reduced to the form

g =sinfsingcosy, ;’:cosf?(,u—sinz,:. (3.1)
where
- 1. -1 11 TR s
= L t, = -, 3= —= = —, A — - — = — —"3/' = —-%—"
E=Lo3t, u 3 = rasamg o (1-e7)"*a. L(,P(l < sin” po).

Here L is the value of L at the initial time instant. Taking into account (1.6) and the assumption that ajc ~ &, we find
that 3, v, and a are O(g). System (3.1) has the first integral

sin” 8 (u - sin” J)=c = sin 8y (u — sin® ,2g) = const. (3.2)
If the light pressure torque is lacking, then agc = 0. ai. =0, and system (3.1) is reduced to the form

9’ =sin@singcosy, P =cosf(u” - sin” 2), where p*=-—v/4d. (3.3)
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>B>C:ithen3<0,v<0.and p< 0. Let us introduce the variable T = cos 8.

Then equation (3.1) can be transformed, with allowance for ( 3.2), to an equation that admits separation of variables.

The subsequent integration yields

where

n=Lo L_L>"u(u—l), el -y @21 2
B 4 n

& dIl
t=tg) = —, (3.4)
(e = to) </zo (z1 - h)(a* - 13)

p=1

Thus, the problem is reduced to 2 quadrature. The integral on the right-hand side in (3.4) is an elliptic integral.

To obtain the solution to (3.1), one must first invert the integral in (3.4). This inversion can be performed in various
ways, depending on the values of the roots of the radicand in the integral (3.4).

If we assume C > B > A4, then 3> 0 andvy>0; p>0ifa>vandu < 0 if & < ~. These cases are considered
quite similarly. First. consider first some inequaliries which are satisfied by the parameters h and a” in (3.4). One can

show that h = 1 —¢;/u € 1, h €a’, and

a? < 1. These inequalities can be satisfied both for h € 0 and for A 2 0.

Let us invert the integral in (3.4) for the case h £ 0. Since [z| < a in this case, we make the change of variable
z = acos . Then relation (3.4) can be reduced to the form

where

x d
r=,\(t—t,)=/ S — (3.5
0 1 —kZsin® Y )
r=qvai-h, k= —“—E <l
P

Here t. is some fixed time instant. Thus, we have arrived at the elliptic integral of the first kind. The inversion of this

integral yields (7]

x=amT, COSX =CnrT, cosf=acnrT. (3.6)

It follows from the last relation in (3.6) that am(cos 8) = a. The functionscn 7 and sn T are periodic with period

T, = 4K(k?), where K(k?) is the comp

lete elliptic integral of the first kind. Obviously, the oscillation period of the

angle 8 is Ty = 4K(k?)/A. Thus, the angle f as a function of time is expressed in terms of Jacobi's elliptic functions.
To determine the function @(t). it suffices to know time histories of the functions sin  sin § and cos & sind. Using
the first integral (3.2), we obtain (for definiteness, we take the sign plus when extracting the square root (4])

singpsind = p(h—a?) dnr, cospsind=+/1—pasn7. 3.7

Thus, all direction cosines of the angul
Ts-periodic functions.

ar momentum vector with respect to the principal central axes of inerua are

Let us now integrate Eq. (3.1) for h 2 0. We set h = b* and represent (3.4) as follows

(3.8)

n(t - to) / dz
=to = £ 2 ] T
: (@ =zDzi-b)

Let us make the change of variables zi = a* cos x + b?sin® x. After some manipulations, the integral (3.8) is
reduced to the form (3.5), where A = an, t. — to, and the modulus & is specified by the relation 0 < k*=(a*-b")/a < 1.
The inverse of the latter integral is x =am7, T =4 n(t —to). Then ,

r=cosf=adnr. (3.9)

Using the first integral (3.2), we obtain (up to the sign)

sinpsing = Vub*-a*) enr, cospsind = /(1 —u)a*=h*)snT. (3.10)

Thus. in the first approximation of the averaging method, one can see an analogy between the problem in question

and the Euler-Poinsot case; the only di

fference is in the coefficients y and p”. In the slow time 7, the probiem on

the motion of a nearly dynamically spherical rigid body under the action of the light pressure torque is equivalent to
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the problem on the motion of an imaginary rigid body with arbitrary moments of inertia. This is accounted for by the
adopted approximation a. = @oc + 2a1.cos &, and is the main qualitative result of the investigation.

3.2. Qualitative analysis of the phase plane (8, p). Letus investigate system (3.1) for 8 and ¢ with the first
integral ¢; (3.2). The ranges of the variables 8 and 2 in this systemare 0 S § < 7 and 0 € p < 27; the parameter 4 can
assume arbitrary values, =00 < p <+0Q, depending on the relationships between the moments of inertia. The admissible
domain D for the parameters ¢; and p is presented in Fig. 1. We divide the domain D into three subdomains, D, D,
and D5. The subdomain D; is specified by the inequalities u 2¢; 20 (p 2 1); the subdomain D>, by the inequalities
;?m > u—1(0< < 1); the subdomain Dy, by the incqualities 02 ¢ 2 p=1(pS0). The domain D = Dy U DU Dy,
shown in Fig. 1, is the set of points between two broken lines: the upper boundary consists of the negative abscissa
semi-axis and the bisector of the first quadrant; the lower boundary consists of the third quadrant bisector shifted right
by unity and the ray p 2 1.

The boundaries of the subdomains D1, D2, and D- are singular sets for system (3.1). The motion corresponding
to domains D, and Dj is oscillatory in 8 and oscillatory or rotational in 2. The separatrix for the domain D, is given
by sin®8 = (u — 1)(u - sin® p)™", and for the domain Dj. by sin®8 = u(u - sin’ 2)"'. In the domain D», oscillations
occur both in 8 and in ¢. :

There are 11 distinctive cases for the choice of the parameter u: 1) p=02)p=13) p=+8,4)u==0,5)p= 146,
G pu=1-6NpL-18)p>+,Ppus-L10p2+L1)p= Lo<s<.

Figure 2 displays the family of graphs of § versus . which were obtained numerically on the basis of (3.2) for
u =0 (case 1). These graphs correspond to oscillauons for various initial conditions. For p = 1 (case 2), the graphs
of 8 versus ;» are obtained by shifting Fig. 2 by 7/2 along the p-axis. Figure 3 shows the graphs of 8 versus obtained
numerically on the basis of the first integral (3.2), for u = —1.7 (case 9). According to these graphs. only oscillations
occur in the variable ; in the variable ©. oscillations occur within the separatrix sin* @ = p(p —si 2 2)”" and rotations
outside this separatrix. For u > 1 (cases 5. 8. and 10), the graphs have the same shape but are shifted by 7 /2 along the
2-axis. As u — —oo (case 7), the curves 8(,>) degenerate into parallel lines. Figure 4 shows the graphs of 8 versus
for 1 = 0.95 (case 6); in this case only oscillations in 8 and > are possible. The graphs of 8(y) for = +4 (case 3) are
obtained by an appropriate deformation of Fig. 4. Figure 5 shows the graphs corresponding t0 the oscillatory motions
for u = 0.5 (case L 1). '



P,

4. INVESTIGATION OF THE EVOLUTION OF T

For h €0, Eq. (2.5) foro with allowance for (3.6) can be re

L. D. Akulenko and D. D. Leshchenko

T T- T
p ¢

)

-

7w/2

QT;-—

n‘/Z 7

Q@

o

S
"

\

Fig. 2

Fig.3

HE ANGULAR MOMENTUM
IN THE ORBITAL FRAME

duced to the form

do d(l = 3ad end 7y,

dr

(4.1)
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where 5
1 132, By AB
r=AMt-t), d=S(-e)Tae T T A

cOS po.

Here po is the initial value of p. On integrating Eq. (4.1), we obtain

k7 o’ 4.2
a:do‘i‘d{‘r(lﬁ':;akz )—BE(Q,}C)TQ—}, & ( )
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where E(g, k) is the elliptic integral of the second kind, k is the modulus of the elliptic function, k' is an additional
modulus, oo is the initial value of 7, and g = am T is the elliptic amplitude. _ '
For small k, one can use series expansions of E(g.k) (7). By substituting these into (4.2), we obtain

2Ky a* (,»_E alry - L) (2sin?2 2
a=ao+d{—;—-[l+3—;2—(k —T(-)]-Z‘a {(l 4Ic)(ZSm..y-o—k: sin 4y)

++[(1+F) siny + k*sin 3y] [(1 — k%) cosy + K’ cos 3yl (1- -‘-kz)l} +0(kY), (+.3)

where y = xr(2K)™"; K and E are the complete elliptic integrals of the first and the second kind. respectively.
Formula (4.3) is valid forany y and small k and consists of a linear and a oscillatory term int.

For k close to unity and small g, one can use expansions of E(g. k) givenin (8]. Retaining the terms up o0 (k’l)
in these expansions and substituting them into (4.2), we obtain

Ap 2 5 SO ,
a’=ao+d{r{l+3—a—kT-]—3%{(1—%%:’2) lntan(+am 7+ )+ kT — X} 4.4

For h 20, Eq. (4.1) foro with allowance for (3.9) can be reduced to the form

do

89 . N(1—3abdn® ) (4.5)
dr o
where 2
AB 1
r=ant-ty), N=(1-€e)"a T.A-B Jali-l-cn cos po
Integrating Eq. (4.5) yields

o = 0o+ N{r - 3a*E(g, b)}. (4.6)

For small k, using the expansion of E(g, k) from (7], we find

o )

c=00+N {—"—1:2- (1 —3a:%> - Egl-a:k:2 sin2y] +0(kY), 4.7

where y = 77 /(2K). Formula (4.7) is valid for any y and small k and contains a linear and an oscillatory term.
For k close to unity and small g, by using the expansion of E(g, k) from [8], we obtain

cniT

o =0’0+N{T—3G: [(1 - 1k?) In@n(yamT+ )+ %k’z—sfl-]}. (4.8)

As follows from Eg. (2.5) for o, for 8 close to 0 or T the velocity & is negative if cos p > 0 and positive ifcosp<0.
In the general case the motion with respect to the variable & can be either oscillatory or rotational. If 9 varies strongly.
then the sign of the expression 1- %_ sin  can change. As a result, the value of o can be practically constant for
(1- % sin? @) = 0. An analysis shows that there exist such values of the parameters . 8o, and o for which g = const.
In the problem in question the character of the motion evolution is more complicated compared with the case of
dynamically symmetric satellite (A = B = C), since in the former case the number of slow variables is greater by unity.

5. SPECIAL CASES OF THE BODY MOTION

The value 8 = 0 is a stationary point of Eq. (3.1) for 8. For g = 0. the differential equation for © admits separation
of variables. On integrating it for p > 1. we obtain the expression

tan > = ltan(r§ + arctan(!”! tan o)l (5.1)

where

= ~ r=pp=-1 € = Loft.

p-1'
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For u < 0, the solution to Eq. (3.1) for (6 = 0) acquires the form

tan @ = [ tan[-r§ + arctan(/~" tan ©o)]. A (5.2)
IfO<u<l,then
_ . gexp(s§) -w (5.3)
e = gexp(sé)+w '

where

1- l-u
j= ———1“ , o g=1+ #tangpo. s=2Vp(l-p), w=l- tan ¢g.
V 1-u n

For small 8, system (2.5) becomes

R} . ‘ 11
-Ej;z—cospo, p=po, L=Lo 0=Losingcosy B D

B
1 sin%; cos® 8 -
s= Lo(—-— R A ———“5) -(1-ea szon (1= %sin’ po).

(5.4)

In these equations, the terms of the order higher than linear in 6 are omitted. For small 8, the equation for ¢ coinci@es
with the corresponding equation for § = 0. and its solution can be represented in the form (5.1)~(5.3). On integrating
Eq. (5.4) for 8 with allowance for (5.1), for u > 1, we obtain

2 )
6 = _7(2)_(12 cos? g + sin? o) { cos?[r€ + arctan(l™" tan @o)] + 12 sin*(r€ + arctan(l™' tan o)} }. (5.5

For p < 0, the solution of Eq. (5.4) for the nutation angle with allowance for (5.2) has the form

2 6312

= Ao oot oo {cos’[-r& + arctan(l™" tan o)) + (2 sin*[-r€ + arctan({™' tan c,;'o)]}'l . (5.6)
0 “ %o

If 0 < u < 1, then, taking into account (5.3), we obtain

3
9=90exp/ F(Ex)dfl. (57)
0

wh&

jlg* exp(2s€) = w?]

F©= [qexp(s€) + wi? + j2[g exp(s€) — w)? '

Integrating Eq. (5.4) for o yields

R}
” 5.8
L.P? t cos po (5.8)

o=00-(1-€")"%a

Note that for a strongly dynamically symmetric satellite (4 = B +0(e?)), the integration of Egs. (2.5) forf and ¢
results in the following expressions:

=8, L=Lo p=po. @ =wo+Lola—7)cosbot,
R}
LoP?

(5.9

o =00-(1-€)"%a t(l-—%—sinzeo) cos po.

Thus, we have investigated the evolution of rotations of a nearly spherically symmetric satellite under the action of
the light pressure torque in the approximation taking into account the zeroth and the first harmonics. Some qualitative
effects have been demonstrated. It is of considerable interest, both for theory and applications, to investigate this
problem for a more complete model of the light pressure torque.
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