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Abstract—Rapid rotational motion of a dynamically asvmmetric satellite relative to the center of mass is
studied. The satellite has a cavity filled with viscous fluid at low Reynolds numbers, and it moves under the
action of moments of gravity and light pressure forces. Orbital motions with an arbitrary gccentricity are sup-
posed to be specified. The system, obtained after averaging over the Euler- Poinsot motfon and applying the
modified averaging method, is analyzed. The numerical analysis in the general case is performed, and the
analytical study in the axial rotation vicinity is carried out. The motion in the specific case of a dynamically

svmmetric satellite is considered.
DOI: 10.1134/80010952511050017

I. PROBLEM FORMULATION

We consider the satellite motion relative to the cen-
ter of mass under an effect of the moment of light pres-
sure forces in the gravitational field, The body con-
tains a cavity fully filled with highly viscous homoge-
neous fluid. Rotations are considered within the
model of a quasi-solid body, whose center of mass
moves over the specified, fixed elliptical orbit around
the Sun [1]. The problems of dynamics, generalized
and complicated by accounting for various disturbing
factors, remain rather topical till now. The studies of
rotational motions of bodies relative to the center of
mass under an effect of disturbing moments of forces
of various nature {(gravitational, light pressure, influ-
ence of a cavity filled with viscous fluid, etc.), close to
that presented below, can be found in papers [1—15].

Let us introduce three Cartesian coordinate sys-
tems, whose origin is placed at the satellite’s center of
inertia [2. 3]. The coordinate system Ox, (i =1,2.3)
moves forward together with the center of inertia: the
Ox, axis is parallel to the radius vector of the orbit’s
perihelion, the axes Ox, and Ox; are parallel to the
vector of velocity of the satellite’s center of mass at the
perihelion and to the normal to the orbital plane,
respectively. The coordinate system Oy, (i =1,2,3) is
associated with the angular momentum vector G. The
Oy, axis is direcred along the angular momentum vec-
tor G, the Oy, lies in the orbital plane (i.e.. in the plane
0x.x;), and the Oy, axis lies in the plane Ox;y,: it 18
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directed so that vectors ¥y, ¥;. ¥; form the right-hand
triple [2—4]. The axes of the coordinate system
0z; (i = 1.2,3) are associated with the principal axes of
inertia of a solid body. The mutual position of princi-
pal axes of inertia and axes Oy, are determined by the
Euler angles. Here, the direction cosines a; of axes
0Ogz; relative to the system Oy, are expressed in terms of
the Euler angles ¢, v, 8 by well-known formulas [2].
The position of the angular momentum vector G rela-
tive to its center of mass in the coordinate system Ox;
is determined by angles A and &, as is shown in [2—4}.

The equations of motion of a body relative fo its
center of mass are written in the form [3]:

dG _, dd_L dh_ Ly
d " di G di Gsind
a8 W—— 1 1)
— = Gsin0sinpcosp| — ——

dr ? ‘P[_Al )

L Lycosy — Lisiny
G j

(1.1

A, )
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& Lycosy + Lysinwy

Gsind
dy _ G(sinz{p+coszgg
dt A A,
_Lycosy + L, Sinwctgﬂ—ﬁctg&
G G

Here, L, are the moments of applied forces relative
to the axes Oy, G is the value of the angular momen-

tum, A, (i = 1,2,3) are the principal central moments of
inertia relative to the axes Og,.

In some cases it is convenient to use, as an addi-
tional variable, along with variable 0 such important
characteristic as kinetic energy T, whose derivative has
the form:

L = 2 .
df 2 ; . Gsind|cosp{ 2L @ c8 @ 1
ait G 4 A A

x (Lycosy — L siny) (1.2)
+ sin (pcosq)(-]— —l]{Ll cosy + L, sinw)}.
A A
The satellite’s center of mass moves over the Keple-
rian ellipse with eccentricity e and revolution fre-
quency m,. The dependence of the true anomaly v on
time #is given by the relation

-
" _2n_ ﬁ(]___"_z) (1.3)

0 i

dv _ oy(l+ecos v)j
dr (] p? ]3’}2
Here, [, is the focal parameter of orbit, m, is the

angular velocity of orbital motion, e is the orbit’s
eccentricity, and i is the gravitational constant.

Projections L; of the moment of applied forces are
composed of the moment of light pressure forces L,
" the moment of viscous fluid forces in a cavity L? and of
the gravitational moment .

Suppose that the spacecraft’s surface represents the
surface of rotation, the unit vector of the axis of sym-
metry k being directed along the Oz; axis. As is shown
in [2, 5], in this case the moment of light pressure
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forces acting on a satellite is determined by the for-
mula

i = [af (as]Rg/Rz)e, x k,

) 2 ( 1.4)
0.(2) % = () Zo(e), p=E2(R)
¢\ R,

Here, e, is the unit vector in the direction of orbit’s
radius vector; g, is the angle between directions e, and
k,sothat e, xk| = sing,; Ris the current distance from
the Sun’s center to satellite’s center of mass; R, is the
fixed value of R, for example, at the initial time
instant; a, (g,) is the coefficient of the moment of light
pressure forces determined by surface’s properties; .5'is
the area of a “shadow™ on a plane normal to-the flux;
Z, is the distance from the center of mass to the center
of pressure; p, is the light pressure value at the distance
R from Sun’s center; c is the velocity of light; £ is the
value of the light pressure energy flux at the distance R,
from the Sun’s center.

Here the projection of the gravitational moment
onto the Oy, axis is presented, the projections onto
other axes have a similar form and are obtained by
rotation (shift) of indices

3

—— 2 (BaBS5; —BB,Sy ).
=
3 (1.5)
B zf’p“m%' B, =cos(v—1X)cosd,
p=1
B, =sin(v—1), B;=cos(v—2L)sind.
Projections of the moment of forces of highly vis-

¢ = 300 (1 + ecosv)’
b s

cous fluid in a cavity L' onto the axes Oy, (i =1,2,3)
have the following form [1]:

p__ P
“‘j AAA, -
x {{DB + (af (cos E;]-&E-C - 3—}‘l([) + S)}ul(f =133,
;S J
P (B, oy
ow=|qg|, B=|B|, wu=|duy], o = 12,
r B s -

3

A; [A;Ot*(pm (V310033 —0taofy + ;) + A3¥13Pu2) = rYa (A; + Aw)]
C=|4 [Alu*(Pm (ot By — aaays — ayB) + O3 Y33Puz) + MY 32 (Ap + A.a)] i
Gy A; (A — Ay — As) + pys A (A — Ay + 43) J

I ) ) A
ApAs (A = A =yaivsr + 0 (Fpw + M)} |

D=

AA; (A - As){—‘."u‘r’gaf + o (Fpy + M;JP.Q]} s

O Ai){[‘."iz it ':’§|)"' —o*(Fipy + Mipg ]}
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2 ; !
Y3303 + Y32¥33031 — Y32
2
s M= | y5:0; + ¥a¥30s — YaBs |
Yas [}’32(131 + ‘{31332]

'(31['}(33’343("11/41 — A = s + Af) % anAz(A1As —Al - A+ 4

)]
S=|va» [Y31PA| (AaAz - Azz — A + AE) + YRJrAS(AlA'Z - Az2 — A4+ Aaz)] ,

733 [ant‘fz (AIAB — Ay = AAy + /4::_2] + Y3104, (AzAs — Ay - Ady + Af)]

Y3 = Bioty + Baoty + By (F=12,3),
Po1 = POy + 03y, Py = POy — 405,
Bui ==ty +0aBa  Poz =~y + 03Py,
Bos = —012iB) + By,

B, =[ w3y (A~ 4) (4 = 4, + 4)

2
+ w3 As (A = A) (A — A + Ai)]&m
B, and B, have a similar form and are obtained by rota-
tion (shift) of indices.

Here. a; are direction cosines between coordinate
systems Oy, (i =1,2,3) and Oz, (i =1,2,3), p, g, r are
projections of the absolute angular velocity vector @ of
the satellite relative to the Ox,x,x; coordinate system
onto the 0z, (i = 1,2,3) axes.

Quantity P is a tensor depending on the cavity
shape only, it characterizes the dissipative moment of
forces, caused by viscous fluid, in the quasistatic
approximation [1]. For the sake of simplicity, in
Egs. (1.6) the so-called scalar tensor is considered,
which is determined by a single scalar quantity P> 0.
The components of this tensor are }"’,} = P§;, where o
are Kronecker’s symbols (tensor P has such a form,
for example, in the case of spherical cavity). If the cav-

%% ity’s shape essentially differs from spherical one, the

determination of tensor components is associated with
considerable computation difficulties.

The dynamically asymmetric satellite is consid-
ered. whose moments of inertia, for certainty, satisfy
the inequality A, > 4, > A;. under an assumption
that the angular velocity @ of satellite motion rela-
tive to the center of mass is essentially larger than
the angular velocity of orbital motion ®,, i.e.,
(€ = wy/o ~ A ,0,/G <1. In this case the kinetic
energy of body rotation is large as compared to
moments of disturbing forces.

It is supposed in the paper, that the cavity is filled

with the high-viscosity fluid, ie., 8 » 1 (87 ~¢’),
the cavity’s shape is spherical; then [1]

P = Pdiag(1,1,1), P =8rob;/5259. (1.7)

4

Here o and 3 are the density and kinematical coef-
ficient of viscosity of fluid in a cavity, respectively, b, is
the cavity radius.

We suppose [2] that by virtue ofsymmelry-the cor-
responding function hasa forma, = a, (cosg, ), and we
approximate it by trigonometric polynomials in pow-
ers of cosg,. Let us present the function g, (cose,) as
a, = ay +a,cosg, +.... Consider now the second term
of the expansion, when a, (cosg,) = 4, cosg, provided
that @, ~ &

With accounting for the assumptions considered
above one can see that the second term (with coeffi-
cient a,(cosg,)) in the formula for projection of the
moment of forces of viscous fluid in a cavity (1.6) has
the order of €*. The gravitation constant p is propor-
tional to the squared angular velocity of orbital motion
®y, i.e., i ~ €% Therefore, to an accuracy of quantities
of the second order of smallness (P~ £?), and the pro-
jections of the moment of forces of viscous fluid in a
cavity have the form:

__iP

+ rEAR{AI —A;) (A - Ay + A,]Ja”

V4

; {p[a* (4 - 4)( A - Ay + 4)
+q[rP A (A - 4) (A — A+ 4)
+ PA(A — Ay) (A = A - Az)]o'-xz

+r[ DA (A = A) (A~ A+ 45) + @ Ay (A~ 42)
x (4= A+ 4)|as) (1=1,23).

The problem is formulated to study the evolution of
satellite rotations over an asymptotically large time

(1.8)

interval 7 ~g %, on which the motion parameters
essentially change.

2. MODIFIED PROCEDURE OF THE METHOD
OF AVERAGING

For the considered problem of solving system (1.1) —

(1.3) at small £ over the time interval 1 ~ £ we apply
the modified scheme of the method of averaging [3,

COSMIC RESEARCH  Vol. 49 No.5 2011
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16, 17]. Let us consider the undisturbed motion
(¢ = 0, when the moments of applied forces are zero.
In this case the solid body rotation represents the
Euler—Poinsot motion. Quantities G, 8, A, T, and v are
converted into constants, and ¢, y, and 8 are some
functions of time 7. Slow variables in the disturbed
motion are represented by G, 8, &, T, and v, while the
fast variables are the Euler angles ¢, y, and 8.

Consider now the motion under the condition

2TA = G’ > 2TA,, which corresponds to the angular
momentum vector trajectories enveloping the axis of

the largest moment of inertia A,.. We introduce the fol-
lowing quantity

. (M- 4)(274 -G
(A - 4)(G7 - 214))

[0 <k’< 1), 2.1

which represents, in the undisturbed motion, a con-
stant—the modulus of elliptic functions describing
this motion.

For constructing the averaged svstem of the first
approximation we substitute the solution to the undis-
turbed Euler—Poinsot motion into the right-hand
sides of equations of motion (1.1), (1.2) and perform
averaging over the variable y, and then over time ¢ tak-
ing into account the dependence of g, 0 on taccording
to the scheme proposed in [3] for the non-resonant
case. Here, the former designations are retained for
slow variables 8, i, G, and T. As a result, we get

%zo, 'j? a|Rn[2GR)

3w, (1 +ecos v]

x Hsindsin2(k—v)-
26(1-¢)’

BaPsN*,

dh A

E}“ = -a,Rg(GRz)

305 (1 +ecosv]
ZG( - ) sind

dT _ CAPT? (A - A) (A — 4) (4 — 43)
dr 3ATAALS? (K)

BiBsN*, (2.2)

${ 4, (A = A;) (A + Ay = A)[KV (k) =W (k)]

Ay (A= A5) (A5 + Ay = A)[ (K = 2)W (k) + 7]

+A4, (A, — A) (A + Ay —A;)[(I—ZRE)W{k)+k2J},
_ E(k
S(k)= A, — Ay + (A — A)k*, V(k)=1+ KER}
E(k)
Wk)=1-—-A,
(k) K (k)
COSMIC RESEARCH Vol. 49 No. 3 2011
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‘3a2 E(D) 1| at 214,-6* >0,
K (k)
Pr | 3“; k2~]+—E-(Q —1% at 2T4, -G’ <0,
2k K (k)
4L =C%h _AhA-4 s (;_T__l _Aods
146 b A=Ay \G* A A=
N*:A2+A3‘_2A]
+3(2A11T )A]+[A2—A3)M-
G2 K (k)k

Here, K(k) and E(k) are the complete elliptic inte-
grals of the first and second kind, respectively [18].
According to the first equation of (2.2), the angular
momentum of a satellite remains constant and equal
to G,. Differentiating the expression for &% (2.1} and
using equations for kinetic energy (2.2), we obtain the
differential equation, which does not depend on other
variables [1, 11]

dk’ _ (k)
2 -(1- =) +(1
g ! )=l=0)+ 1+ )k’ ]K(k]
3A, | (Al + 45 ) — 4, (A + A
L=- [( *A)- A4 4) L@
(A — 4)[ Ay (A4 + 45 — 4;) + 24, 43)
£=(i-)/N,
His 347 Ay 45 2
PGy (A4 — 4;)[4 (A + A — A)) + 24.4]

Here /£, is a constant. The equality 2T4; = G’, cor-

responds to the value of & *= I, which corresponds to
a separatrix for the Euler—Poinsot motion. Equation
(2.3) describes the averaged motion of a tip of the
angular momentum vector G over the sphere of con-

stant radius G.

3. ANALYSIS OF AVERAGED PROPER
ROTATION OF A SATELLITE

[t follows from equations of motion (2.2) that,
under an effect of the moment of forces of viscous fluid
in a cavity, body’s kinetic energy T evolves within the
limits from the rotation around axis A; (unstable
motion) to rotation around the axis 4, (stable motion).
Changes of angles 3 and & depend both on the action
of external moments of light pressure and gravitational
forces, and on the action of the internal moment of
forces of viscous fluid in the cavity. The expression in
curly brackets of the right-hand side of Eq. (2.2) for T
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is positive (for 4, > A, > A;), because the inequalities
(1-%*)K < E< K. are valid. Therefore, dT/dt <0

since T > 0, i.e., the variable T strictly decreases for
any k” € [0,1].

df _ 2T) (4 - 4) (4 - 4)
A~ A[A (A + A — A) + 24,4) S* (k)

{4 (A= A)(A + 45 = 4) KV (k) - W (k)]

Let us consider now the system consisting of the
fourth equation of system (2.2) and Eq. (2.3). We
make the equation for the kinetic energy change
dimensionless, considering quantity N (2.3) and
the moment of inertia 4, to be characteristic quan-
tities of the problem. We have

(3.1

Lk (AE 3 AR)(A3 dibye= A‘}[(kz B E)W{k) * kz}’_’q-‘ (4 - A)(A+ 4, - Aa)[(l = Zkz) W(k} + kz}} )

2AT

where T = ==L—_ £ is determined according to (2.3).

0
This equality is valid for &> 0, i.e., for the case
) R X it o5 .

The numerical calculation was performed for the
values of moments of inertia 4, =8,4,=15,6,7, 43 =
4; kKX0) = = 0.99999, G(0) = 1. The initial value of
kinetic energy was found from the equality

_Gi A A+ (A- A,)k* (0)
2 A (A - A) + As(A - A:)kz(o}'

In the dimensionless form we have

. A (A~ A+ (4 ~ 4,)k*(0))
A4~ A)+ A; (A — Az)kz (0]

We have considered also the case of & < 0, which
corresponds to the case 2TA, > G’ > 2TA;. Equation
(2.3) is written in the following form:

df _ 2(T) (A= Ay) (A = A)
dE A [Ay (A + A — A) + 24487 (K)

Ay (A = A) (A + Ay — A) KV (R) =W (k)]

(3.2)

FA Ay = A) (A + Ay = A)[ (KT -2)W (k) + kl]
S A (A = ) (A + Ay - A]}[(] — )W (k) + ]
with the initial condition
7 A.s(Az ~ Ay + (A — Az)kl({)))
A (A = A)+ A (A - Ak’ (0)

In this case the numerical calculation was per-
formed for the values of moments of inertia A = 4,
A, =5,6,7, A, =8. The plots of kinetic energy change
have the form presented in Fig. 1.

The plots of kinetic energy change have such a form
in the case, when the satellite witha cavity rotates only
under the action of the gravitational moment | 14], or

only under the action of light pressure [15], because
the evolution of quantity T is influenced only by the

moment of forces of viscous fluid fully filling the cav-
ity. -

Curves 1. 2, 3 correspond to various values of
A, = 5,6,7. The value T = 2 corresponds to rotation
around the axis A, (unstable fotion), T = 1 represents
rotation around the axis A, (stable motion). For & =0
(passage through the separatrix) the curves have a hor-
izontal tangent line (inflexion points). Similar plots of
kinetic energy change can be obtained by recalcula-
tion from formula (2.1) for the dimensionless kinetic
energy

AS (k)

foe .
A (A = 4) + KA (A - 4)

[t is seen from this expression that for k: = 0 we
have T — 1. Similarly, for the case of rotation around
the axis A, one can demonstrate that T — 2.

4. ANGULAR MOMENTUM VECTOR
ORIENTATION

Let us consider the system consisting of the equa-
tions for A and & of system (2.2). As is known, Rl
= I,/(1+ ecosv), and the focal parameter of orbit is

determined by the equality I, = u”* (1~ ¢*) w; . Then
the first two equations of (2.2) take on the form:

4f3 2 2
dé _ —M(%Hsin&sin 2(h-v)
> :
dt 6G(1-¢?) LK @
i ] 23
+3(1+euos;)m0 !321331'\’*],
1=¢
dh _ _mf,’f“(l +ecosv)’
dt G(l—ez)2
2 23 1 ] 1
5 2 (1+ecosv ,
x ﬂf?‘-%HcosScos‘(}.—v]—90—(——@6—(;75—5;53”* :
u"'" 2(1-—9 )smﬁ
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We make the equation of angular momentum
change (2.2), equations for a true anomaly (1.3) and &2
(2.3), and the equations of system (4.1) dimensionless.
Characteristic parameters of the problem are as fol-
lows: G, is the angular momentum of a satellite forr=

0, and 03, is the value of angular velocity w of satellite
motion relative to the center of mass at the initial time
instant. Dimensionless quantities are determined by

the formulas 7 =Qy G = G/Gy, A =A8,/G,,
L = L/(G). T = T/(G,). £°P = PO2/G,.
We introduce the designation

(4.2)

and call this quantity the normalized coefficient of a
moment of light pressure forces.

After making equations dimensionless we have the
system of equations of motion in the form:

s )

ds _ _83(1 +ecosv)
di 2@(1—82)2

x | A sin8sin2(x wh&;ﬂ_ggﬂ
2(] - ]

dh _Ez(l +ecosv)’

dr 6(1—92)2

Bzﬁaﬁ*}

-

x ﬂMB]BRN*—Fﬁcosﬁcosz(l—V] ;
2(]—2‘]sin8
\
! 1-e)
£ i’ _ 21
dr N
J E ()]
L= (1=&%)=[(1=x) + (1 + ) kT |=2E0L
Fom ‘31‘_112322/?32 _ ’
P(A = A3)I A, (A + A, - 4,) + 24,4,
ﬁ:l{saz—‘?(—@—ﬂ at 274,-G* >0,
20 (k)
~1[3& 4 _ ~
H_2[k2 [k W(k)] 1} at 24~ G* <0,
2 G+h - /aa(jl‘iz) *_(QT 1) 44
AR i sy e =
1+6 A (4 - 4,) G A)A-A
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{4 (A - A) (4 + 4, - AN KV (k) -W (k)]

+A, (A, - A;)(4; + 4, —j,][(kz —2]W(k)+ k"}

G monpes  am  a 27

A (A = A) (A + & - A)[(1- 26w (k) + 47,

The first three equations for A, 8, and v of system
(4.3) can be written as follows:

B _ ga(v,5.1), LA (v,50),
dr di

] 2 - (4.4)
Q!_E(_t_m' h(e) = (1-¢*)"".

di h(e)

Here, A, A are coefficients in the right-hand sides
of the first and second equations of (4.3), 8, ). are slow
variables, and v is a semi-slow one.

We have obtained the system of special type, whose
solution is found by a modified method of averaging
according to the following scheme [17]:

2n
é.? = 82@ J-—-———.A(X"S’V) 5 dv,
dr 2 J(1+ecosv)

In
6 e AGBY)
df 2n J(l+ecosv)’
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Fig. 2.

Fig. 4.
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After averaging we get

e

5 _
dd_ dh_ 2|3N*__2TH |cosd
di " di

@i ko) (1-¢)"

The system was integrated for slow time 1 = &’f.
The numerical calculation was performed at the initial
conditions G(0) = 1; k*(0) = 0.99; 8(0) = 0.785 rad;
and A(0) = 0.785 rad. The orbits with the following
eccentricities were considered: e = 0 (circular orbit)
and e = 0.421 (highly elliptical orbit). For the dimen-
sionless time t we have the following picture of
changes in the angle of orientation of the angular
momentum vector, presented in Fig. 2. Curves ] and 2
correspond to the circular and highly elliptical orbits,
respectively.

Figure 3 presents the plots of change of the same
angle for various values of satellite’s moments of iner-
tia. Curves 2, and 3 correspond to various values of

A, =7,6,5 for constant values A, = 8, 4; = 4. Itis seen
in Fig. 3 that the character of change of angle A for

close values of moments of inertia 4, and A, is almost

linear. As the value of the moment of inertia A,
decreases, the curvature of function grows, and in this
case the function ceases to be monotonous.

The character of change of angle X has the same
form, as in the problem of motion of a satellite with
the cavity filled with viscous fluid in the gravitational
field [14].

In the case of motion of a satellite with the cavity
filled with viscous fluid under the action of the
moment of light pressure forces [15], the character of
change of angle . is almost linear, and, as the value of

the dimensionless moment of inertia A, increases, the
function increases more rapidly.

One can also analyze the changes in the character
of function #(t) for various values of the dimensionless

quantity P. Curves I, 2, and 3 in Fig. 4 correspond to

various values of P(0) =10, 100, 1000. It is seen that
the character of variation of the angle has almost linear
form.

According to the numerical calculation, it is shown
that for the asymmetric satellite with a cavity filled
with viscous fluid, which moves under the action of the
moment of light pressure forces in the gravitational
field, the angular momentum vector G remains to be a
constant quantity directed at constant angle d to the
vertical of the orbital plane. In this case, the tip of vec-
tor G moves over the sphere of radius G, clockwise, and
the kinetic energy decreases down to the dimension-
less value of 1 corresponding to stable motion of a sat-
ellite around the axis 4,. The same direction of motion
of the tip of the angular momentum vector is charac-
teristic for the problems on motion of a satellite with a
cavity under the action of the moment of forces of
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RAPID ROTATIONS OF A SATELLITE WITH A CAVITY FILLED

gravitational attraction [14] and of the moment of
light pressure forces | 15].

5. EXTREME CASE OF ROTATION CLOSE
TO AXIAL ONE

We consider the motion of a body for small Kt <1,
corresponding to solid body motions close to rotations
around the A, axis. In this case, the right-hand side of
Eq. (2.2) can be simplified using the expansions of
complete elliptic integrals into series in terms of &2
[18]. Then, Eg. (2.2) can be integrated, and the
asymptotical solution is written in the form

k=G exp{—(s—gm] at £ >0,

k*=C, exp[w—_;'-)-é} at £ <0,

C,=const, 0<C <1,

(5.1)

The change of kinetic energy can be roughly
obtained qualitatively, following paper [1], by simple
conversion from relation (2.1), using the found solu-
tion for small &% (5.1). We have

G (A = A4) (A4 - 4)
24} (4, - 43)

x C) exp[—(sﬂl'-—;‘f—)% at £ >0,

2 T s -
T = Q__+G (4 : A) (4 Az}clexp{(:” )()5]
245 245 (A, — A) 2
e ; at §<0.

For the dimensionless value of kinetic energy
equalities (5.2) take on the form

T# =1 +(A1 - A3)(A _A?']Cl exp[__(-?’ + )C)gl

2
r=2 4
24,

(5.2)

AI(AE _A") 2 |
at £>0,
(5.3)
- " Ve
T :ﬁLJrAl(Aa2 A) (4 f“z)cl exp[@ X)-}
A A; (A4, - A) 2
at £<0.

The integration constant C, is found roughly from
the condition of equality of kinetic energy by formulas
(5.3) at £ = 0. We have

= A1A3 [_Az o= AsJ(A! ‘Az} )
A2 (A - A) + A (A =AY

(5.4)

1
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The plots of changés in dimensionless Kinetic
energy T* in the case of small k? have the form pre-
sented in Fig. 5. Curves /, 2, and 3 correspond to vari-
ous values of 4, = 5,6,7, with constant values of 4, = 8.
A, =dfor>0and A =4, 4; =8 for £ < 0. Asisseen
in the figure, the character of function 7% = T*(g) is

the same, as for 0 £ k* < 1, and, also, the asymptotic
values of T* retain their values at positive and negative
dimensionless times.

The asymptotical expression for the modulus of
elliptic functions can be presented as a function of the
dimensionless time t

k* = k; exp[-p1],
N
p = —orms [ A (A — 4) + Ady (A - 4)+ A |
AT A Ay
Let us consider the differential equation for
changes in angle T (4.4) in the dimensionless time T for
<mall &2 with accounting for (5.5). The right-hand side

of the equation includes the non-constant quantity H.

At 2T4, — G* < 0 function A (1) with allowance for the
terms of the second order of smallness has the form:

It is seen that for T — oo quantity H — -0.5.

The asymptotic expression of the kinetic energy can
be represented as a function of dimensionless time ©

oy AEpE IR
T_":Q_—+G (A],z A_’)(Al_ Az)kﬁexp[—pt].
2, VA (A




a-

" A, = 7,6,5, for constant values of 4, = 8, 4, = 4 and for
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Fig. 6.

Substitute the obtained expression for # and T
into the equation for changes in angle A, we integrate
the result and find

cosd {3(% “faz)kr?

) 460(1 - ez)m /]1 (jz = /];)p
p = % g - B

+(1 _392 (A, + A, —24)) + F]1}+ Xi,

where %,, k; are determined from the initial condi-

tions. The plot of this function A = A (t) fork* < 1 has
the form presented in Fig. 6.

Curves /, 2, and 3 correspond to various values of

the initial value of angle A(0) = 0.785 rad. As isseen in
the figure, the character of curves is similar to func-

tions A = A (1) for arbitrary k..

The change of angle X, for small &, has approxi-
mately the same form, as in the case of motion of a sat-
ellite with the cavity, filled with viscous fluid, in the
gravitational field [14]. In our problem, however, the
decrease of the angle of orientation occurs slightly
more rapidly.

During the motion of a satellite with viscous fluid
under the action of the moment of light pressure forces
[15], angle A increases, as in the case of satellite
motion under the action of the moment of light pres-
sure forces in the resistant medium [8].

AKULENKO et al.

6. THE MOTION OF A DYNAMICALLY
SYMMETRIC SATELLITE

Let us consider the motion of a dynamically sym-
metric satellite (4, = 4,), whose moments of inertia,
for certainty, satisfy the inequality 4, > A,. We write
the equations of body motion relative to the center of
mass in the form [2]

QQZLS,QS-:EL’@: ég y
dr dt G dr Gsind
Q@:éﬁosw”L[Siﬂ\{J
dr G ’ - B
d_‘l’:GCGSg[L__i_\+L]cosq;+Lzsin\p: -
dr 3 Al/ Gsine
dy _ G _Lcosy+ L,siny L.
dt Al G CLE GC g

Projections of the moment of forces of viscous fluid

in the cavity L] onto the axes Oy, (i = 1.2,3) for 4, = 4,
have the form:

7 B
Aty (6.2)

X {prgz‘f;(ln +qr’ A, — rA, [92 + quara} (i=123).

To solve the problem we apply the method of aver-
aging [15]. In the case of undisturbed Euler—Poinsot
motion, when the ellipsoid of inertia represents the
ellipsoid of rotation, ¢ and y are linear functions, and
angle 0 is the constant quantity [19]. For the disturbed
motion angles @ and  are fast variables, and angle 8 is
slow one. We perform averaging of the systems of
equations for slow variables G, &, A, and 0 over fast
variables: first over y and then over .

After averaging over fast variables @ and v we have
the equations in dimensionless quantities

dg* _ . df _ 2 ok )
F =0, @ =& (A — A;)sinbBcosH, (6.3)
0 i
48 _ —az(—l +ecos»;) (] = zs.in2 8)
dr* .

2(1—92)_

% 8in 55in2(}_—v){r—1%gﬁ__(%)\’)[AJ* N A:"Ji
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Fig. 7.
; 2
_q'_)gzaz[l+ecos:r) (l—é'inze)
dr* (1_92) 2
x cosdcos’ (A —v) §~U+e—{m2V)(Af—A3*)*r :
G*(l—e )

Here, the dimensionless quantities are determined
by equalities r* = Qt, A;k = A0, /G,, °%* = S/Quaz.
where Q) is the angular velocity of satellite motion rel-
ative to the center of mass at the initial time instant.

The following designations are introduced: T

SﬂaspGﬁ
525v*4; 4,0}
the gravitational constant. We call quantity I, the nor-

malized coefficient of the moment of forces of viscous
fluid in a cavity.

according to (4.1) and Iy = where W is

Let us investigate the solution to system (6.3) for

small £ on the time interval t = £’* It is seen from the
first equation of system (6.3), that the angular
momentum is a constant quantity. Integrating the sec-
ond equation of system (6.3) for the nutation angle, we
obtain

tgh = tgh, exp[l", (Al* - A;)TJ' (6.4)

The plot of function 6 = 8(t) has the form pre-
sented in Fig. 7. The calculation was carried out at the

initial condition 6(0) = n/3 pax. rad. Curve 7 corre-
sponds to the case of A, > A, (the satellite is “oblate”
in the axis of inertia 4,), and curve 2 corresponds to
the case ofAl* < A_:; (the satellite is “elongated” in the
axis of inertia A;).
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The last two equations of (6.3) and the equation for
the true anomaly (1.3) in thé dimensionless time t can
be written as

dd _ 2 5 dar _ 2
ﬁ—ﬁﬂ(\’,b,l), 5—8]\(\-’,5,;\.),
dv _ & 2 _ 2
= _h—(e](l +ecosv), h(e)= (1 -e )

where A, A are coefficients in the right-hand sides of
two last equations of (6.3). It is seen from the system
(6.4), that 6 and A are slow variables, and v is semi-
slow one.

Applying the modified method of averaging [17],
we get:

n (6.9

dd
dt

dh _ _ cosd (l——§sin28] 3(A|*—Af}_r_
@t o1V 2 GH(1~¢’)

=0,

It is seen that the angle of deflection & of the angu-
lar momentum vector G from the vertical remains
constant in the mentioned approximation, as in the
case of asymmetrical satellite.

Taking into account (6.4), we find analytically the
law of change of angle » depending on time T:

3oy L+ yexp(Bt)

k=h;+ T—
Fes 2B I+y

cosd A" - AY) " [ g% _ 4*
}‘I = < - 0 —r 1 {3 _21—'. A': _A_I .
2(1—92][){2[62[]_32) } { )
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Fig. 9,

Y =1tg°0,.

The plot of function i = A(1) has the form pre-
sented in Fig. 8 for the initial value of the nutation
angle 6(0) = /3 pax and at the initial value of angle
A =m/4dpan. The curves are constructed for various
values of parameter f = -2, —1,1,2. It is seen in the fig-
ure that for negative values of parameter B at small
times the function A = A(t) first increases and then
decreases. For positive values of parameter 8 function
A = A(1) is descending. At times t > 2.5 the plots of all
functions are almost linear.

In our problem the character of decrease of A coin-
cides with that obtained in [14, 15] in studying the
motion of a satellite with viscous fluid in a cavity under
the action of gravitational or light force moments. The
angle of orientation of the angular momentum vector
G in the case considered by us decreases more rapidly;

For the values of parameter B=-0.5-1,-1.5-2

“the plots of variation of nutation angle 0 = 0(t) are

constructed (Fig. 9). [t is seen that the smaller param-
eter B, the more rapidly the angle 6 — 0, that is, the
more “elongated” is the body along the A axis, the
more rapidly the satellite tends to the position of stable
rotation around this axis.

The character of change of nutation angle 6 in the
case under consideration is close to that studied in the
case of rotation of a satellite with viscous fluid under
the action of the moment of light pressure forces [15].

Thus, in the motion of a dynamically symmetric
satellite with a cavity, filled with viscous fluid, under
the action of the moment of light pressure forces the
angular momentum vector G remains to be a constant
quantity directed at constant angle 8 to the orbital
plane’s vertical. The direction of motion of a tip of
vector G depends on the shape of a satellite. In case of

AKULENKO et al.

the satellite “flattened” along the axis of inertia A, the
tip of vector G moves over the sphere of radius G,
counterclockwise. In this case the nutation angle tends
to the limiting value of /2rad. When the satellite is
dynamically “elongated” along the same axis, the tip
of vector G moves over the sphere of radius G, first
clockwise and then counterclockwise, and the nuta-
tion angle tends to zero.
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