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RAPID ROTATION OF A HEAVY GYROSTAT ABOUT A FIXED
POINT IN A RESISTING MEDIUM

L. D. Akulenko and D, D. Leshchenko UDC 531.1

We consider an asymmetric heavy rigid body with a spherical cavity filled with a high-viscosity liquid
rotating rapidly about a fixed point in a weakly resisting medium, We call motions rapid when the moment
of the applied forces about the fixed point is small in comparison with the instantaneous value of the kinetic
energy of rotation,

To investigate the motion of the body with a liquid we introduce three Cartesian coordinate systems: a
stationary x; system (i = 1, 2, 3); a yj system with the y; axis along the angular momentum vector G of the body
and liquid (Fig. 1); a z; system whose axes coincide with the principal axes of inertia of the rigid body. The
%j system is transformed into the y; system by two rotations: by an angle A about x;, and by an angle ¢ about
v3 The position of the z; axes with respect o the y; system is determined by the Eulerian angles 6, ¢, and
(7

Table 1 lists the cosines of the angles between axes,

Thne equations of motion of an asymmetric body with respect to a fixed point have the following form
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Here the Lj are the y; components of the moment of the applied forces; G is the magnitude of the angular
momentum; A, B, and C are the principal moments of inertia with respect to the z; axes; 6, ¢, and y are the
Eulerian angles,
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Fig. 1
Using the expressions for the z; components of the angular momentum vector G
Ap = GsinOsing; Bg =GsinBcosg; Cr=Gceosb, (2)

we obtain for the kinetic energy T of the body and its time derivative
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where p, q, and r are the z; components of the absolute angular velocity vector w of the body.

By taking account of (2), the y; components of the moment of the gravitational forces, the external
resistance, and the components of the perturbing moment due to the effect of the viscous liquid in the cavity
on the motion of the rigid body can be written in the form
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Here the Ij are the aerodynamic dissipative torque coefficients [1], which are assumed constant,

Since we are studying rapid motion, the ratio mga/T, ~& <« 1 is assumed small, where a is the distance
from the center of mass to the fixed point. The resistance of the medium is assumed weak and of the same
order of smallness: [I11/Gy, ~ € < 1, where 1]l is the norm of the dissipative coefficients matrix,

Terms taking account of the effect of the viscous liquid filling the cavity on the motion of the rigid body
are derived in [14] by using the table of direction cosines, where p is the density of the liquid, and v is the
kinematic viscosity, The constant tensor P depends only on the shape of the cavity, and characterizes the
dissipation of energy resulting from the viscosity of the liquid.

In the problem under consideration we specify the tensor P in the form Pij = Pojj, where ojj is the
Kronecker symbol, and P >0, Thus, for example, for a spherical cavity of radius a we have P = 8n a'/ 525,
It is assumed [14] that the cavity is filled with liquid of sufficiently high viscosity so that pPG,/vABC ~ ¢,
where G, and T, are the initial values of the angular momentum and kinetic energy of the body.

The rapid motion of a heavy rigid body about a fixed point was investigated in [8], and the rapid rotation
of a heavy rigid body with a fixed point in a weakly resisting medium in [10],

Using equations derived by Chernous'ko [14], the stabilizing effect of a viscous liquid in a cavity on the
rotation of a top about 2 given axis was studied in [12] for an arbitrary tensor P. The rapid rotation of a
symmetrical top with a liquid in a gravitational field, and the possibility of the damping of nutational oscilla-
tions by a viscous liquid filling a cavity in the rotor or in the gyroscope frames was investigated in [5, 6}.

We study the solution of system (1), (4) for small ¢ over a long time interval t ~ 1/e. We solve the
problem by the method of averaging [2, 11]. We average over the Euler—Poinsot motion by the method of [13,
14] for nonresonance cases,

Let us consider unperturbed motion (¢ = 0) when the moment of the applied forces is zero. In this case
the rotation of a rigid body is Euler—Poinsot motion, The quantities G, 6, A, and T become constant, and
6, ¢, and ¢ are certain functions of the time t, The quantities G, 6, A, and T are slow variables in the
perturbed motion, while the Eulerian angles 6, ¢, and y are fast variables,

For definiteness we assume that A >B >C, and consider motion under the condition 2TA = G% =z 218,
which corresponds to paths of the angular momentum vector enclosing the z, axis [9]. We introduce the
quantity
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which is a constant for unperturbed motion — the modulus of elliptic functions [9] characterizing the motion
of the end of the angular momentum vector in the fixed system.

To construct the average system of the first approximation we substitute the solution of the unperturbed
Euler—Poinsot motion [9] into the right~hand sides of Egs. (1) and (4), and average over ¢ and then over the
time t, taking account of the dependence of 6 and ¢ ont, The previous notation is preserved for the slow
averaged variables, As a result we obtain
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Here K(k) and E(k) are complete elliptic integrals of the first and second kind;
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It follows from Eq. (7) that the presence of a cavity containing a viscous liquid and a resisting medium
leads to the evolution of the kinetic energy T of the body and the magnitude of the angular momentum G, Itis
clear that in the first approximation the viscous liquid in the cavity and the resistance of the external medium
affect a change in T, The evolution of the magnitude of G occurs only under the action of the resisting force;
only the diagonal components Ijj of the dissipative torque matrix enter the equations. Terms containing the
nondiagonal elements Iij (i = j) drop out in the averaging.

The expression in curly brackets on the right-hand side of Eq. (7) for G is positive for A > B > C, since
(1—k%)K = E = K [4]. Each coefficient in I;; is a nonnegative function of k?, and all of them cannot vanish
simultaneously. Therefore, dG/dt < 0, i.e., G rigorously decreases for any A2<]0, 1].

Equation (7) for T contains terms characterizing the effect of the viscous liquid in the cavity and the
resistance of the medium, According to [14] the term resulting from the effect of the liquid in the cavity is
negative, FEach term of the expression in curly brackets in the equation for T characterizing the effect of the
resistance of the medium is positive. Thus, the kinetic energy T also rigorously decreases,

The angular velocity A of the angular momentum vector about the vertical depends on the effect of gravity,
the resistance of the medium, and the damping effect of the viscous liquid in the cavity. In the first approxi-
mation of the method of averaging, the deviation o of the angular momentum vector from the vertical remains
constant,

As the result of a number of transformations, using (6) and the last two of Eqgs. (7), we obtain the
differential equation for k2
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When the inequality 2TB = G? = 2TC is satisfied, corresponding to paths of the angular momentum vector
enclosing the z; axis, it is necessary to interchange the parameters A and C and Ij; and Ig; in Eqgs. (7) and (8),
and to replace aq by a; in Eq. (7) for A-. Then Eq. (8) retains its form, but » must be replaced by —n, and %y,
by —»y. The angular momentum approaches zero asymptotically according to a law which can be estimated as
G ~ exp(~yt) (y = const >0). The quantity k? varies according to Eq. (8). The only quasistationary point
of Eq, (8) is the value k = 0,



We note that, in contrast with previous investigations [14], the magnitude of G varies with time, In
general the equations for G and k® cannot be integrated, and they are quite difficult to investigate,

We integrated this system numerically by computer for the initial conditions G(0) = 1,414, k2(0) = 0,99,
The value of kz(O) corresponds to motion close to passage through the separatrix., In addition, for definiteness
we take A = 3,2, B = 2.6, C = 1,67, which corresponds to » = 0.112, Figure 2 shows graphs of the functions
k% and G obtained by numerical integration. Curves 1 and 2 correspond to ny = —4.471 (Iy; = 2,322, I,y = 1,31,
Iy = 1425) and wy = 3.852 (Iyy = 0.919, Iy, =5,228, Iy = 1.666). It can be seen that in the first case the magnitude
of the angular momentum G decreases more rapidly than k%, while in the second case, for the values of the
parameters chosen, Kk? approaches zero more rapidly than G, i.e., the motion approaches rotation about the
Z1 axis,

In addition, for the first case the rate at which k® and G approach zero for various initial values of k?
(k*0) = 0.8, 0.6, 0.4, 0,2) was computed numerically.

The calculated curves are shown in Fig, 3. The rate at which k? and G approach zero for various values
of k%(0) was calculated numerically for wy = —4,471 (corresponding to curve 1 of Fig. 2, obtained for K2(0) =
0.99). Thus, for a different choice of values of k’(0) for the chosen values of the parameters of the problem,
G approaches zero more rapidly than k%

For small k% which corresponds to motion close to rotation about the z, axis, the system of equations
for G2 and k? takes the form
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It should be noted that (9) is a system of nonlinear differential equations describing the evolution of
ecological systems [3, T].

From (9) a first integral is determined directly in the form
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For small G2 and k? it follows from (9) that the angular momentum decreases exponentially, and k°
decreases or increases exponentially.

According to (9), for an arbitrary G the value of G? decreases, and the behavior of k? depends on the
sign of the coefficient

C (A —1:B) + B (Iss4 — 1,C).

The authors thank ¥, L. Chernous'ko for a discussion of the work and for valuable comments,

LITERATURE CITED

1, V. V. Beletskii, Motion of an Artificial Satellite About Its Center of Mass, Israel Program for Scientific

Translations, Jerusalem (1966).
2. V. M. Volosov and B, I. Morgunov, The Method of Averaging in the Theory of Nonlinear Oscillating

Systems [in Russian], Moscow State Univ. (1971).
3. V. Volterra, The Mathematical Theory of the Struggle for Existence [Russian translation}, Nauka,

Moscow (1976).
4, I S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New

York (1965).



6.

11,

12,

13.

14,

B, P, Ivashchenko, "On the motion of a symmetric top with a cavity filled with a viscous liquid, " Dokl
Akad, Nauk Ukr, SSR, Ser. A, No. 9, 794-797 (1976).

B. P, Ivashchenko, "Motion of a gyroscope with a cavity filled with a viscous liquid, " Prikl, Mekh.,
14, No. 8, 110-115 (1978),

E, Kamke, Handbook of Ordinary Differential Equations [in German], Chelsea Publ.

D. M. Klimov, G, N, Kosmodem'yanskaya, and F. L, Chernous'ko, "Motion of a gyroscope with
contactless support," Izv, Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 3-8 (1972),

L. D. Landau and E, M. Lifshitz, Mechanics, Oxford, New York (1976).

D. D. Leshchenko, "Motion of a ponderous rigid body with a fixed point in a mildly resisting medium, "
Prikl, Mekh., 11, No. 3, 89-94 (1975).

Yu. A, Mitropol'skii, The Method of Averaging in Nonlinear Mechanics [in Russian}, Navkova Dumka,
Kiev (1971).

E. P. Smirnova, "Stabilization of free rotation of an asymmetric top with cavities completely filled
with a liquid, " Prikl, Mat. Mekh., 38, No. 6, 980-985 (1974).

F, L. Chernous'ko, "On the motion of a satellite about its center of mass under the action of gravita-
tional moments," Prikl, Mat. Mekh,, 27, No. 3, 474-483 (1963).

F. L. Chernous'ko, "Motion of a rigid body with cavities filled with a viscous liquid at low Eeynolds
numbers," Zh, Vychisl, Mat, Mat, Fiz., 5, No. 6, 1049-1070 (1965},

6602



