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SCME PROBLEMS ON THE MOTION COF A RIGID BODY WITH INTERNAL DEGREES
OF FREEDOM
D. D. Leshchenko and 5. N. Sallam UDC 531.1

wit pherical cavity
fille y to a point on the sym-
metry ed effect of the viscous
liquid dynamically symmetric
rigid
o body with a spherical cavity
fille visc i a b 5 hic d elastically to a point
0, on the symmetry axis and experiencing viscous friction. The origin of a Cartesian coor-
dinate system fixed to the body is taken at the center of inertia O of the body Q¥ with
the mass at point O, and the liquid. The unit vectors e,, e,, &3 of this coordinate system
are taken such that e, is along the axis of dynamical symmetry of the body Q*. Then the
position vector of the point O is Op = pe; and we assume with no loss of generality that
o > 0. In this coordinate system the moment of inertia temsor of the rigid body Q% has
the form diag(A, A, C) where A and C are the equatorial and axial moments of inertia. In
terms of components along the axes e;, e,, e, the equations of motion are [2, 3]:
pP 2
Ap* +(C—A)gr = Fgr 4 Br'p + 5 C(A—C) pr*
pp 2.
Ag" +(A—C)pr =—Fpr + Br'qg + WC(A—-—C)W ;
£1 1Y
Cr = — AC™'Br (p* 4+ g9 + B C— )7 (2 + ). -1
H s f the absolute ang
t quid, and inematic viscosity.
the shape of the cavity and is written in the
delta and F > 0. For a spherical cavity of ra
The basic assumption of our treatment is
small. Here [ is the linear dimension of the
and is inversely proportional to the charvacter
we use [ and Tx as scales of length and time.
meter: v ! < 1.
w-Temperature Technology and Power Engineering. Translated from
28, No. 8, pp. 58-63, August, 1992. Original article submitted
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g

ut in (1.1)
= mp*QCA™} A% (p? + ¢7) + C?r?;
B = mpPAQ*C* (A —C) A,

C
w
EI
o=

T g

he case when the coupling constants ave large {3]

Multiplying the three equat (1.1) by Ap, Aq, and Cr, respectively, and adding
them together, we obtain a first integral of the system (1.1
2 . A2 (p2 2 22
G? = A% (p® - g?) + C2r% = const, (1.4)
which expresses the constancy (in the approximation considered here) of the magnitude of
the angular momentum vector G of the rigid body Q* with solidified liguid about the point
C.
Taking the time derivative of the kinetic energy
1 , .
H= 5 [A(p*+ ¢ +Crd, (1.5)
using the equations of motion (1.1), we obtain
. - P 2
H =—mphQ'C2A™ (A —Cr(»* +¢%) ’4—?‘512 (A—Cpr(p+¢) <0, (1.6)

We introduce the angles 6 and ¢ determining the orientation of the vector G relative

to the rigid body

Ap =GsinBcosg, Ag=GsinBsing, Cr= Gcos?. (1.7)
| R P RPN W PR AU SR | : 1. P S S B
Here 9 is the mutatior angle and ¢ 1S the precession angilie.

We transform (1.1) to the variables (1.7}, taking into account the constancy of G.
Solving the resulting equations for the derivatives ¢ and 6° and substituting (1.2), we
obtain

6" =asinBcos®0 -+ nsinbcosB, ¢ = ycosh. (1.8)
Here
91 O—t—l g5
= mp*AQ T C AT (A — C) G* = const,
ool =31
N =pfPGVTATCT (A — C) = const;
1 0
Li1.9)

p=G(C—A—mp?QCATG) A~'C™" = const.
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In the limit A + 06, p + 0, a » 0 (1.8) and {1.9) reduce to the results of [2] for the
motion of a rigid body with a cavity filled with a viscous liquid. When v + =, n > 0 these
P . P o~ T3l = 1 - g by o e e £ nd e d . TS N U A e oo
expressions reduce to the rvesults of [3] for the motion of a rigid body with a movable mass.
A g A S e . ER. R S, 4 w g - o RS S 17 et aed o - SR
Integrating the first equation of (1.8}, we find for a dynamically symmetric body
— d In{a 4- 1 sec? §) -+ 1 tg 6= -+ const (1.11)
2o+ m) o1
P - - mva o tTre w { Y O S ey a2 A R SR S — . Y .
where o and 7, are given by {(1.9). Applying the initial condition 6{(t,) = 8,, we obtain
Lo 1 111
LTrom yi1.11)
2 2 — 2 2
(1 4 o sec?0) (tg20)° = (1 + o sec? 0,) (tg20,)° exp 29 (1 + o) 7). (1.12)
| 5 S T i
Here we have assumed
P T S U L T
this is not the case then w
put
m1. e i1 1 1Y 2
The result (1.12) is a
sign of n is determined by
(ot arn Led 14
(prolate budy) the angle 8
o S | o, 2 o217 1 - [EPRI T,
final motion will be a rota
. . (- . b
netry. If A < C (oblate bo
— mi. L 1 [P W Ly o e 4
o, The final motion in thi

Therefore the directio:
to the body approaches a st es
of inertia. The time depen f
of the nutation angle U\L) for the initial values 6, =
of the parameter n, which are indicated on the curves.
here the quantity 6{t) approaches a right angle and zero
is supports the above conclusions on the motion of the body.
no um G, of the entire system, which is conserved in a nonmoving coor-
dinate system, differs from the vector & by the angular momentum k of the mass m and by
the gyrostatic angular momentum L. For the conditions (1.3) the vector k is of order 0{Q7?)
[3]. The vector L was calculated in [2] and is of ovder O{(v™'). Therefore our results
show that in the presence of internal dissipation the motion of the system approaches a
steady rotation about the axis of largest moment of inertia as t + ». This qualitative
conclusion is well-known {see [2, 3]) and follows from energy considerations. Indeed, the
kinetic energy of -igid body Q%, using (1.7}, is
H:—;{A(pg-‘;-q)-{» 72 = 12A7IGE[1 + (A— C) C" cos® 6] (1.14)
We see that the minimum value of H corrvesponds to 8 = /2 for A > C and to 6 = § for
A < C, which agrees with the results obtained above. In the case considered here the mov-
able mass and the cavity with the liquid inside the body only slightly change its angular
momentum, but can lead to significant energy dissipation.
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tion of a dynamically symmetric rigid body with a spherical cav-
ity £ iquid and a movable point mass m coupled elastically with the
body a ymmetry axis and experiencing quadratic friction with coeffi-
cient artesian coordinate system fixed to the body is taken at the
center o the system Q% consisting of the body with the liquid and the point
mass rs of this coordinate system e,, e,, €5 are such that ez is
along symwetry of the system. Then the position vector p of point
0, is e the case P> 0. In this coordinate system the moment of inertia
tenso 37 the form diag(A, A, C), where A and ¢ are the equatorial and
axial of ine espectively, Taking components along e,, e,, €5, the equations
Y - JENVROPINS SN I { o 35 BN
Oor motion are [1, <Z]:
N 8 BP C A c 2.
Ap' +(C—A)ygr = Ngr + Spr® 4 <7z C(A—C) pr%
. 8 BP C (A C) 2.
Ag +(A—C)pr =— Npr + Sqr° + ——75- —L)ars
£ 1Y
. 1 pr 2 2 (2.1
Cr = —SACT P (p*+ &)+ 1 C—Ar P + 9.
Here p, q, r are the components of the absolute angular velocity w, 8 is the density of
the liquid, and v is the kinematic viscosity.

For a spherical cavity of vadius a4 we have P = 8va’/525 [2]. The Revnolds number is
assumed to be small, i.e., the viscosity of the liguid is large.

To shorten the notation in {2.1) we introduce the notation

2 -y \ 2.
N = mpQ~CAT@, G = A*(p*+¢) + Cr% (2.2)
ks B |
L)
W P 1/2 —~1 {2
S =mpPAQTC AT dd | (pt + ¢?) ", d=1—CA™,
where (i, = ¢/m, ¢ is the stiffness of the elastic coupling, and X, = p/m = A%, @ » w.

We consider the case when the coupling coefficients A, and @ are such that the "free"
motion of the point mass m caused by an initial deviation damps out rapidly compared to
the period of rotation of the body {1]. Then the motion of the body will be close to the
Buler—Poisson motion and the relative vibrations of the point mass driven by the motion
of the body will be small.

Multiplying the three equations of {2.1) by Ap, Aq, and Cr, respectively, and adding
these equations together, we find a first integral of the motion: the magaitude of the
angular momentum G = |G|

G == const.
(2.3)

To determine the quantity w we use the following method [1-3]. We write the components
of the vector G along the principal central axes of inertia as follows:
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Ap = GsinBcosg, Ag=Gsinbsing, Cr= GcosH.

Here 8§ is the nutation angle and ¢ is the precession angle.
entiating {2.4) and using the equations of motion {(2.1) and the expr
the following differential equations for the spherical angles 6 and

The coef {2 1
1 —2 by,
%= —GC7 (d + mp*Q " CA™G?%;
9 £%
1 g =Bl 3 A (y—3—2 4—6 7 \2.0)
N=BP(A— )G ATC™, E=mp*AQTC AT d|d|{.
In the special case of spherical symmetry (A = C, d = 0) it follows from (2.6) that
the constants n and § are equal to zero and (2.5) can be integrated explicitly 8 = &,

P S B e e P ol i 2 . - T .
We consider now the general case n ¥ 0, £ # 0. Equatior {(2.5) for the angle 8 car
be written in the form

t
do S
o

L&+

~
8]
~
~

The sol x and r. Figures 3
and 4 show g ons 6, = /6, v/4 and
different va he corresponding curves.
According to sign of the difference
A—C. It i body) the angle 8 ap-
proaches w/2 ) that ¢ -+ 0. When
A<C{n<o0 and 1 decreases. In
this case g—x

Therefor coordinate system fixed
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