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O N  T H E  E V O L U T I O N  O F  R I G I D - B O D Y  R O T A T I O N S  

D. D. Leshchenko UDC 531.383 

The perturbed rotational motion of a rigid body with a nearly Lagrangian mass distribution is studied. 
It is assumed that the angular velocity of the body is sufficiently high, its direction is close to the axis of 
dynamic symmetry of the body, and the perturbing moments are small in comparison with the gravity 
moment. A small parameter is introduced in a special manner and the acceleration method is used. 
Averaged systems of motion equations are obtained in first and second approximations. The evolution of 
the precession angle is determined in the second approximation. 

1. Statement of Problem. We shall consider the motion of  an asymmetric heavy rigid body about a fixed point O 
under the influence of  gravity G alone. The equations of motion have the form [3] 

ap" +( C - B ) q r = m g (  ZcsinOcosq~-YcCOSO ); 

Bq" +(A-C)pr=mg(xccosO-ZcsinOsintp  ); 

Cr" +( B - A  )qp=mq(ycsinO s inq~-xcs in0cosq~)  ; (1.1) 

V" = (p  sin tp + q cos tp ) cosec 0 ,  0 "=p  cos q~- q sinq~ ; 

q~ = r - (p  sin q~ + q cos q~ ) cot 0.  

We shall examine the case of a heavy rigid body in wlfich the ellipsoid of  inertia with respect to point O is close to 
the ellipsoid of  rotation, so that its principal moments of inertia have the form 

A = A ~  B = A ~  C~A ~ 0.2) 

Here, 81 and 82 are dimensionless constants on file order of unity, A o is file characteristic value of  file moments of inertia, and 

<< 1 is a small parameter. 

We assume that file coordinates of the center of gravity C with respect to the fixed point satisfy the relation 

2 + y  2 I /2  
0 < ( x c  c) <<Zc" (1.3) 

Tiros, dynamic symmetry is lost when the center of  gravity of  the body is displaced from the 0 c axis, and for the 
coordinates of the center of gravity in the case in question we can write 

Xc=eXll, yc=eYl L, Zc=l, (1.4) 

where x I and Yl are dimensionless quantities tlmt are considered finite in comparison with tile small parameter s, and / is the 
characteristic dimension of the body. 

Odessa Academy of Cold, Ukraine. Translated from Priknadnaya Mekhmfika, Vol. 35, No. 1, pp. 98-103, January, 1999. 
Original article submitted July 15, 1997. 

1063-7095/99/3501-0093522.00 �9 Kluwer Academic /Plenum Publishers 93 



We reduce system of  equations (1.1) to a system of  Euler dynamic equations (1.5), relating to perturbations the 
gyroscopic moments and the moments due to displacement of the center of  gravity of  the body from the axis of  dynamic 

symmetry I71 

A p" +( C - A  )qr=ksinOcosq)+3/[ 1 ; 0.5) 

A q ' + ( A - C ) p r = - k s i n O c o s q ) + M  2; 

C r ' = M  3, M i = M ~ ( p , q , r , v , O , q ~ , t )  ( i = 1 , 2 , 3 ) .  

The last three kinematic equations of  (1.1) are unchanged. Here, Mj (i = 1, 2, 3) are projections of  the vector of  the 
perturbing moment onto the principal inertial axes that pass through point O; k = mgl. 

Here, jnst as in [51, the following assumptions are made: 

2 r 2 2 P + q 2 < <  , Cr >>k ,  I ~ / i l < < k  ( i = 1 , 2 , 3 ) .  (1.6) 

Assumptions (I .6) mean that the direction of angular velocity of the body is close to the axis of  dynamic symmet~;  
the angular velocity is high enough that the kinetic energy of  the body is much greater than the potential energy due to the 
gravity moment; and the perturbing moments are small in comparison with the gravity moment. Inequalities (1.6) make it 
possible to introduce the small parameter and let 

p = ~ P , q = e Q ,  k = e K ,  c < < l ;  

M i = e 2 M ~ ( P , Q , r , ~ , O , 9 , t )  ( i  = 1,2, 3). (1.7) 

A number of authors, such as [ 1, 2, 5, 6], have studied the nearly Lagrangian perturbed motion of  a rigid body. The 
totality of  simplifying assumptions (1.6) or (1.7), as was shown in [5], make it possible to obtain a comparatively simple 
averaging scheme in the general case. 

The problem is to investigate the asymptotic behavior of  system (1.5) if conditions (1.2), (1.4), (1.6), and (1.7) are 

satisfied. We shall employ the averaging method of [4] on a time interval on the order of e - t .  
2. Averaging Procedure. We replace the variables and parameters (1.2), (1.4), and (1.7) in system (1.1). Having 

cancelled e on both sides of the first two equations of (1.1), after a number of transformations we obtain a system in which 
A is replaced by A ~ in the first two equations, and the projections of the vector of  the perturbing moment on the principal 
inertial axes passing through point O, following (1.5)-(1.7), have the form 

M*I=-K81 sin0 c o s ( p - K y  t cos0 + Q r [ 8 1  ( C - A  o) +52A o I ; 

M 2 = - K 8 2  sin0 sin(p +Kx I cosO +Pr [82 (A 0 _ C ) _ S I A  0 ] ; (2.1) 

M 3 = K sin 0 (Yl sin q~ - x 1 cos cO ) .  

An averaging procedure for a system such as (1.5) is described in [5]. We examine the zeroth-approximation system 

(having cancelled ~ on both sides of the first two equations of (1.1) after replacement of the variables and parameters (1.2), 

(1.4), and (1.7)) and let ~ = 0. 
Then, from the last four equations obtained we have 

r=r o, W=Wo, 0 = 0  o, q~=rot+q~ 0. (2.2) 

Here, r0, W0, 00, and q)0 are constants equal to the initial values of the corresponding variables for t = 0. We substitute equalities 

(2.2) into the first two equations of system (1.1) with allowance for (1.2), (1.4), and (1.7) at ~ = 0 and integrate the obtained 
system of two linear equations for P and Q. We represent the solution ,as 
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e = a cos Yo + b sin Yo + K C -  I r o I sin 0 0 sin (r o t + q~o ) ; (2.3) 

Q : a s i n y  o - b c o s  ~'o + K C -  t r o  I s in0 ~ cos (r o t+~o o ) ; 

a = P o  - K C - l r o ! sin O o sin ~Oo, b = - Q o  + K C -  t r 0 t sin 00 cos ~Po ; 

Yo = n 0 t ,  n o = ( C - A ~ 1 7 6  Ino/ ro]  <1. 

Here, Po and Qo are the initial values of  the new variables P and Q introduced in accordance with (1.7), and the variable y = )'o 

has the meaning of  the oscillation phase. System (1.1) with allowance for (1.2), (1.4), and (1.7) is substantially nonlinear, therefore, 

we introduce the additional variable Y, which is defined as 

y = n ,  y ( 0 ) = 0 ,  n = ( C - A ~ 1 7 6  (2.4) 

Equalities (2.2) and (2.3) determine the general solution of  system (1. l)  with allowance for (1.2), (1.4), (1.7), and 

(2.4) for ~ = 0. The first two relations of  (2.3) can, with allowance for (2.2), be rewritten in equivalent form 

P = a cos y + b sin ~, + K C -  I r - 1 s i n  0 s i n  q~ ; ( 2 . 5 )  

Q = a sin y - b cos 7 + K C - I r - 1 s i n  0 c o s  ~p.  

These equalities are easily solved for a and b. 

We introduce a new variable p as follows: 

r = r o + e p .  (2.6) 

Using formulas (2.5) and (2.6), we move in system (1.1) with allowance for (1.2), (1.4), (1.7), and (2.4) for ~ ~ 0  

f romvar iab lesP ,  Q, r, ~,  0, q>, and 7 to the new variables a, b, p, ~ ,  0, or, and T, where 

= ~, + q~. (2.7) 

After transformations, we have a system of  seven equations that is more convenient for further study: 

a" =~ (A ~  I(M~ COsT + M ~  I r ol COsO ( b - K  C - l o l sinO coscO+ 

+ ~ 2 K C - I  - r oX p cosO ( b -  2 K C -1 r o  1 sinOcoso~ ) +c 2 K C-2 r o2 M~ sinOsin~ ; (2.8) 

b = ~  (A o ) -  � 9 4  r o l  cos0  (a+KC- 1 r o I s in0 sino~)- 

- -2 2KC-2ro2MOsinOcoso~ - ~ 2 K C  lr  o p c o s O ( a + 2 K C - l r o l s i n O s i n ~ ) - ~  

p ' = ~ C - I M  O, O'=~(acoso~+bsinc~); 

=~cosecO(as ino~-bcoso t )+~KC - l rO  1-  _ 2 K C - I r o 2  p; 

~ ' = C ( A  ~  o ) - 1  p_~cotO( asinot_bcoso~ ) _ ~ K C - l  ro 1 cosO+~ 2 K C - l r  o2 p c o s O  ; 

~,. =no+~(C_ A 0)( A o ) - 1 P .  

Here, M o are fimctions obtained from M *  (see (1.7)) as a result of substitutions (2.5)-(2.7) 
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M ~  ( a , b , p ,  v ,  O, ~ ,  y , t  ) = M i  ( P ,  Q , r ,  u/, O, t p , t )  

System (2.8) can be reduced to the form 

x ' = e F  1 ( x , y ) + e  2 F 2 ( x , y ) ,  

Y l ' = c o l  + e g !  ( x , y ) + c  2g 2 ( x , y ) ,  

y2"=r  2 + ~ h  I ( x , y )  +~ 2h 2 ( x , y ) ,  

x ( O ) = x o ;  

1 10 y ( 0 ) = y  ; 

y 2 ( 0 ) = y 2 ~  

( i =  1,2,3). (2.9) 

(2.10) 

where the vector function x = ( x I . . . . .  x S ) is composed of the slow variables a, b ,p ,w ,  and O; y l and y 2 are the fast variables 

tx and y; andto I and t% are constant phases equal to C ( A  0 ) - l ro and ( C - A  0 ) (A 0 ) - I r~ respectively. The vector functions 

Fi, gi, and h i ( i = 1, 2) are determined by the right sides of Eqs. (2.8). 

We let Z l be the two-dimensional vector (gl, hi). Since the perturbing moments M~ ( i = 1 , 2 , 3  ) are periodic with 

respect to q~ with a period of  2n, then, according to substitutions (2.5)--(2.7), functions M ~ of  (2.9) will be periodic functions 

of ct and u with periods of 2x. 

In accordance with the procedure for constructing an asymptotic form of system (2.10) [4], we seek a substitution 
of variables 

* * * 2 
x = x  + e U l ( X  , y  ) + c  u 2 ( x * , y * ) + . . .  ; 

y = y * + e  v I ( x * , y * )  +~ 2 v2 ( x * , y * ) + . . .  ; 

l , y  * *1 *5 * *1 *2 y = ( y  2) ,  x = ( x  . . . . .  x ) ,  y = ( y  , y  ) 

(2.11) 

such that system (2.10) in the new variables takes the form 

X * ' =  ~:A 1 ( x * )  + ~ 2 A  2 ( x * )  + . . . ,  

y = c o + e B l ( x * ) + e B 2 ( x  )+  . . . .  ~ = ( ~ l , t o 2 ) .  

(2.12) 

It is known [4] that the equations for the vector functions u I and v I have the form 

ca OUl/OY*= F l ( x * , y * ) - A  l ( x * ) ;  

O) OVl /Oy*= Z 1 ( x * , y * ) - B  1 ( x * ) ,  

where ( Of/O x ) is the matrix of partial derivatives II of , /o  xJ II ( i , j  = 1 . . . . .  5 ). The functions A 1 ( x * ) and B 1 ( x * ) are 

determined by the formulas 

2n 2n 
1 �9 �9 

A l ( X * ) = 4 x : i  j" j" F l ( X  ,Y ) d y  * l d y * 2 ;  
0 0 

2n 2n 

B I ( X * ) =  1 j" j" Z l ( X . , y , ) d y . l d y , 2  
47t 2 0 0 

Tile function u 2 ( x *,y * ) must be a solution of tile equation 

(2.13) 
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Ou2/OY*tO =G( x*,y*)-A2 ( x*) ; 

G(x*,y*)=F 2 (x*,y*)+OFl/O *u I +OFl/Oy*v l-OUl/OX*Al (x*)-OUl/OY* B 1 ( x * ) .  

The function A 2 (x  * ) is determined by the formula 

2~ 2z 
1 

A 2 ( x * ) = - - ~  I I G(x*'y*)dy*Idy*2 
4 0 0 

We determine the averaged first-approximation system of  equations for the slow variables 

the second-approximation system for the slow variables 

x ~ ' = s A  l (x~)+s2A2 (x~), 

and the second-approximation system for the fast variables 

y~'=o)+gBl(Xl(t)), y 2 ( 0 ) = y  0, 

which is immediately integrated 

x2(0)=x~0, 

y O=(ylO,y20), 

t 

y~(t) =yO +oa t+efB 1 (Xl(S))ds .  
0 

We determine the vector functions 

+o~ t+e [B 1 (x ( l)(~.s))ds),  v (1 2 x~(t)=x ) ( ~ t ) + ~ x  ( ) (~ t )+eul (x( l ) (~ t ) ,y~  

yV (t)=yO +o) t+e~B 1 (X ( 1 ) ( ~ . s ) ) d s .  

o 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Thus, file construction of  approximate solutions x v ( t ) andy v ( t ) comes down to the following procedure: we solve 

Eqs. (2.12) and (2.14) by means of Fourier series, use formula (2.15) to construct the vector function A 2 ( x * ), then determine 

solutions x ( 1 ) and x ( 2 ) in accordance with [5], and, finally, we obtain file desired approximations from formula (2.20). 
3. The Case of a Nearly Dynamically Symmetrical  Body. As an example of  application of  file proposed method, 

we study the motion of  a heavy rigid body about a fixed point when relations (1.2) are satisfied for the principal moments of  
inertia and (1.4) for tile coordinates of  the center of  gravity C with respect to the fixed point. 

In this case, the first three equations of  (2.8) in variables a, b, p, ~, 0, ~, y are written with allowance for (2.1); the 
other equations of  system (2.8) remain unchanged. After calculations by formulas (2.13), tile components of  vector functions 
A 1 and B l have tile form 

A ] l ) = - b  I 1/2C(A 0 ) - 1  r0(81 +82)+KC-Iro I cos 0 ] ; 

A ] 2 ) = a [  l/2C(A~ ]; 
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A ~ 3 ) = 0 ,  A~4)=KC-Iro 1, A ~ 5 ) = 0 ;  (3.2) 

B~I )=c (A~  B~2)=(C-A~176  o. 

The fourth and fifth components of  the vector function u I = {u ~i )} ( i = 1 . . . .  5 )are  expressed asfollows: 

u~4)=-C-IA ~  ( a c o s c x + b s i n o ~ ) ;  

u ~ 5 ) =C- 1A O r o 1 ( a sinot-b c o s o t ) .  0 .3 )  

We determine the functionA 2 (x  * ) by formula (2.15) 

A ( I ) = K C - I  ro2b cos0 [ p -  I/2KC-2ro2A ~ (1  + c o s 0 ) ] +  1/4KC- I ro I b (~51 +~i 2 ) c o s 0  ; 

A(2)=-KC-lro2acosO[p-l /2KC-2ro2A~ (3.4) 

A ( 3 ) = 0 ,  A~4)=-xC-lro2p+A~ A ( 5 ) = 0 .  

We find a solution of  the averaged first-approximation system of equations (2.16) with allowance for (3.2) for the 
slow and fast variables: 

a(l)=a~176 b(l)=b~176 

p ( l ) = 0 ,  W(l)=eKC-lro l t+~o,  0 ( 1 ) = 0 0 ;  (3.5) 

~t(t)=C(A~ ~ , ( l ) = n o t  , 

where 

11 =~ [ 1/2 C(A 0)-1 r0 (81 +82 )  + K  C -  1 r o  I cos0  ~ ] ; 

a o, b o, no are determined according to formula (2.3). 

On the basis of  the formulas, we can, following (2.20), construct the components of the function x v ( t ) that satisfy 

variables W and 0 

V Vc ( t ) = ~ V o + e K C - l r o  I t + V  ( l ) .  

v( l )=~2tA~ ro3_ l /2c2 tKC- l  rol(51+82)- 

- e  C -  IA ~  o l cosec0 ~ (aO2 + b ~  l/2sin(~x (1)§  ; (3.6) 

V sin13=a(l)(a ~176 -1/2 0 e ( t ) = 0  o 

Here, in �9 v tile expressmn for W ~, the bounded oscillating term contains nonzero initial data. The nature of the slow phase variation 

of small oscillations is evident from formulas (3.5) for a ( t ) and o~ ( 1 ) 

The obtained expression for V ( 1 ) refines for the given problem the formula for the angular velocity of  precession 

o~p = K C -  1 r o l, which is found in the approximate theory of gyroscopes [31. 
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Note that in formula (3.6) for V ( l ), there is no dependence on the deviation of the center of gravity from the Oz c 

axis, which is specified by expressions (1.14). The dimensionless quantities x I andy I disappear with averaging. In addition, 
these perturbations do not change the nutation angle, even in the second approximation. 
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