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JCRTURBED MCTIONS CF A RIGID BODY THAT ARE CLCSE
10 REGULAR PRECESSION

., D. Akulenko, D. D. Leshchenko,
and F. L. Chernous 'ko

1zv. AN SSSR. Mekhanika Tverdogo Tela,
yol. 21, No. 5, pp. 3-10, 1986

yoC 531.383

The authors investigate perturbed rotational motions of a rigid body that are close
+g regular precession in the Lagrange case. It is assumed that the angular velocity of
the body 1s large; its direction 1is close to the axis of dynamlc symmetry of the body, and

| cmat two projections of the vector of the perturbing moment onto the prinecipal axes of in=-
artia of the body are small as compared to the restoring moment, while the third is of the

‘ same order of magnitude as the moment in question. A small parameter 1s introduced in a

| special way; the averaging method is employed. The averaged system ofs equations of moticn

! 15 obtained in flrst approximation. Examples are considered.

1. Consider the motion of a dynamically symmetrical rigid bedy about fixed point 0
under the action of restoring and perturbing moments. The equations of motion (dynamic and
yinematic Euler equations) have the form

Ap'+(C—A) qr=k sin 6 cos ¢-+M,
Ag'+(4—C) pre=—F sin. 0 sin g-+M,
CreMy, Mc=M{p, 07, % 0, @ ), (i=1, 2, 3)

¥ =(psin g-+g cos @) cosec 8, 0'=pcosg—gsing (1.1
@ =r—{psin g+q cos ¢)ctg O
Dynamic esguatlons (1.1) are written 1nm projections cnto the principal axes of iner-
-+2 gf the body, passing =hrough point O. GHere p, 4, T are the projections.of the angu-
‘ap welocity vector of the body onto these axes; T-‘.i {1 = 1, 2, 3) are the orojactions of

-na yector of the perturbing moment onto rhese same axes, which are 2r-periodic functicns
7 ehe Tuler angles @, 3, 63 b iIs the precession zangle; 4 is “he nutation angle; o 1S the
of intrinsic roration or spin; and A and C are the equatorial and axial moments OT

Lk 34
i r{: of the body relative to point 0o, A#£C. It 1is assumed that the body is acted upcn
3y a restoring moment whose maximum value 1is equal to x and that is generated oy 2 force
sf constant magnitude and direction, applied at some fixed point of the axls of dynamic
symmetry. In the case of a heavy top we have

k=mgi (1.2)

Here m 1s the mass of the body; g 1s the acceleration due to gravity; and I 1s the i
iistance from fixed point O to the center of gravity of the body.

The perturbing mcments Mi in (1.1) are assumed to be known funetions of thelr argu-
ments. For Mi =0 (L{=1, 2, 3) Egs. (1.1) cor:espond to the Lagrange case and may de-

seribe motions of a Lagrange top acted upon by perturbations of various physical origin,

as well as motions of a free rigid body relative to the center of mass, when this body 1s
icaad upon by a restoring moment generated by aercdynamic forces, and certain perturbing

mements.

In this paper we make the following initial assumptions:

Pre€s, Cr>k, |Mi<k (i=1, 2), m",..h : (1.3)
D 1988 by Allarton Press, inc.
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which mean that the directicn of the angy) . & 5 the axis of
dynamic symmetry; the angular velocity ?s¢?§rézlogét¥hgé zﬁg aiggtfs gigizyuof the body is
much greater than the potential energy resylg Eé Prom the PQStcriq:cﬁomeﬁt; two projec-
tions of the vector of the perturbing moment onto the principal akESJO¢ ipnertia of the
body are small as compared to the restoring momentu while the third isaof -he same order
of magnitude as this moment. Inequallties (1,3) 2liow us to introduce the small parameter
€ and to set :

p=eP, g=eQ, kmeK, e<i

M=e’M>*(P, Q,r, % 0, @ t) (imd, 2), Maﬂ”s.tpv Q, ¥ 8, ¢ t) (1-4)

The new variables P and Q, as well as the variables and constants ¥, Y, 8, ¢, X, A,
Cy Mi* (1 =1, 2, 3), are assumed to be bounded guantities of opder unity as € * 0.

The problem that we formulate 1is that of investigating the asymptotic behavior of the [/
solutions of system (1.1) for small €, if conditions (1.3) and (1.4) are satisfled. This &
will be done by employing the averaging method [1~-3], which is extensively employed in
problems of dynamics of rigid bodies, on a time interval of order e™~.

In [3-5], this method was employed to investigate a variety of problems of dynamics,
chiefly for bodies with dynamic symmetry. Paper [6] was the first to perform averaging
with respect to Euler-Polnsot motion for an asymmetrical body. A number of studies, &.Z.,
[3, 5, T=14], have investigated perturbed motions close to Lagrange motion. The ensemble
of simplifying assumptions (1.3) or (1.4), made in this paper, enables us to obtaln a
relatively simple averaging scheme in the general case, and to exhaustively investigate a
number of examples.

2. In system (1.1) we make change of variables (1.4); canceling’t on both sides of
the first two equations in (1l.1), we obtain

AP +(C—A)Qr=Ksin 8 cos g-+al,*
AQ'+(A—C) Pres—K sin 0 sin g+2M,*, Cr=sH,*
' =e(P sin p+Q cos ) cosecd, 8 =s(P cos g—0 sin ¢) (2.1)
@ =r—e(P sin g+Q cos p)ctg 8

Let us consider the zero-approximation system; we set ¢ = 0 in (2.1). Then the last
four equations in (2.1) yleld

re=ry, "=y, Gu=f,, @Qm=rd+p, (2.2)

Here rgy, Ug» 80, ¢0 are constants equal to the initial values of the corresponding
vapiables for t = 0. We substitute (2.2) intc the first two equations of system (2.1) for
¢ = 0, and we 1lntegrates the resultant system of Two linear equations for P, Q. We write
the solution in the form

) Pe=g cos 1,+b sin 1+ KC'r,~" sin B sin(reéi+od)
Q=a sin 1,—b cos Yo+ KC~'r,~" sin 4 cos(ré+oe)
a=P,—KC='ry~" sin 8, sin @s, b (Qy+KC™'rs™ sin 8y cos gy (2.3)
Te=ndt, ne=(C—A)A='ry#0, |ndr|<!

D R | A M8

Here PO’ QO are the initial values of the new variables P, Q, introduced in accord=
ance with (1.4), while the variable y = Yy, has the meaning of the oscillation phase. Sys-

tem (2.1) is essentially nonlinear (the natural oscillation freguency of the variables P,
Q depends on the slow varlable r), and therefore we introduce the additiocnal variable v,
defined by the equatlion

t'=n, 1(0)=0 (2.4)

For € = 0 we have v = v4y * not in accordance with (2.3). Equations (2.2) and (2.3}
define the general solution cof system (2.1), (2.4) for & = 0. By eliminating the con-
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stants, with a'_'_c-waﬂgg I:T“lo*:' (2.2), it is possible to rewrite the first two expressicns in
D A & D”Ll"".-"a_'ent Form:
™ - - - = —-—
P=g cos y+b sin Y+KC™'r~" sin B sin @ (2.5)
(=2
Q=q sin y—b co8 Y+KC='r"sin 8 cos p
and to solve for a, b:
a=pP cos 1+Q sin 7—KC~'r* sin 8 sin({y+9) o
(
(2

b=p sin y—Q cos 7+KC-'r~' sin 8 cos(1+9)

Let us consider system (2.1) for € # 0 and expressions (2.5) and (2.6) as change=-of=-
variable formulas (that contain the variable Y) that define a changeover from variables
P, @ to variables a, b of Van der Pol type [l] and vice versa. Using these formulas, in
system (2.1), (2.4) we convert from the variables P, Q, r, ¥, 8, ¢, Y to the new variables
&, b, r, ¥, €, a, v, where

a=1+p ’ (2.7)

After some manlpulation, we obtain a system of seven equations'fhat is more conven-
ient for subsequent investigation (instead of the six in (2.1)):

a’=eA~" (M, cos 1+ M, sin y)—eKC~'r* cos 8(b—
—KC='r~* sin B cose) +e KC~*+~*M,* sin O sin &
b'=ed='(M,* sin y—M, cos 1) +eKC~'r~" cos O (a+
+KC='r~! sin @ sin @) —eKC~*r—*M,* sin B cos @, r =eC~'H,
W'=g cosec 9.(4 sin @—& cos @) +eKC='r="

—
na
o

—

. 8'=e(g cosxtb sinw)
a =C4~'r=¢ ctg 8{a sin a—b co8 @) —eKC-'r~ cos 6, t'=(C=4)A~'r

0
Here M.~ denotes functions obtained from M,* (see (1.4)) as a result of substitution

3 = :
/ fly L.2.,

, -
-lLZ .

(3%
i

‘lli'(a! b! r ‘9. 9! & Ty :)-M‘.(pl Q- r, *: 91 P ‘) (i-‘lq 2‘ 3) \2 . 9 )

iote that the cnangeover from two variables P, @ $o three variables a, b, ¢ is due to
reasgns of convenlence: for € = Q0 the system for P, Q nas the form of a linear systemn,
whilgdsubstitution {2.5) 1is nonsingular ror all g, b.

We 1introduce vector x, whose components are provided by the slow variables a«, b, r,
v, & of system (2.8). Then this system can be written in the form

T'meX(z, a, 1, t), a'=CA~'r+eY¥(z, a)

{'=(C=4)4"'r, z(0)=z,, «(0)=a, 1(0)=0 (2.10)

Here the vector-valued function X and scalar functlion Y are defined by the right sides
of (2.8), whose initial values can be obtained in accordance with (2.2)=(2.4), (2.7).

Consider system (2.8) or (2.10) from the standpoint of employing the averaging method
of [1-3]. 3System (2.8) contains the slow variables a, b, r, ¢, & and fast variables repre=-
sented by the phases @, ¥ and time t; Y appears only in the first three equatilons of (2.8).
The system 1s essentially nonlinear, and 1t 1s extremely difficult to employ the averaging
method directly [15]. Let us assume, for the sake of simplicity, that the perturbing mo-
ments Mi* are independent of t. Since Mi* (1 =1, 2, 3) are 2n-periodic in ¢, 1t follows,

in accordance with (2.5)=(2.7), that functions M*_U from (2.9) will be 2m-periodic functions
of 2 and y. Then system (2.10) contains two rotating phases x and v and the corresponding
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% -1 . s ek
frequencies CA "r and (C - A)A “r are variabile

cases should be distinguished:

LI T

In averagins system (2_8} aor (2.3—0)3 TWo

£ _ g R

e : “he nonresonant case, when frequencies CA Ir and (C - 4)

-A”"r are noncomensurable, and the resonanc ensurab
- 2 L case, when these fre cies are com

[15]. A very important feature of systenm (g'lg)’is the fact thaﬁ“ﬁﬁe ratic of the fre-

quencies 1s constant [(C—A)A-'r]/[CA-'r]=1—=AC~ and the resonant case ococurs for

i

le

C_JA—[H' ij=2 (2.11)

where 1 and J are relatively prime natural numpers, while in the nonresonant case C/A is
an irrational number. -As a result of (2.11), averé_ging of nonlinear system (2.10), in
which X 1s Independent of t, 1s equivalent to averaging ©f a quasi-linear system with con-
stant frequencies. Thils can be achieved by introducing the independent variable vy.

In the nonresonant case (C/A # 1/j) we obtain the first-approximation averaged sys-
tem by independent averaging of the right sides of system (2.8) with respect to both fast
variables a, y. As a result, we cbtain the following equations for the slow variables:

a'=8A =11, —eKC~'r"'b cos 8+a KL=+ sin e’
b =ed 'y, +eKC-'r"'a cos O—e KC~*r=* sin O
. FmeCmiy,, Yme EC-'r, 9'=0

in Ia
‘1 3
He(a, b, 1,9, 0) -_ﬁ.[ I(H.'cu'f-i-ﬂ.'sinﬂdud'g ) !

L]
i ia
L :
Pa(a, b,r, %, 0) =% | (M sin1—M;' cos v)da dy, : P

N—

Y

n-(a,i.};,i.ﬂ)-ﬁ:‘- :[M.'dm (2.12)
in =
Wa'(a, b,r,¥,0) -éf !.M;'sinadcd-r,

1a'*(a, b,7, 9, 8) --_;—J fﬂ.’mad«d{

Solving averaged system (2.12) for perturbing moments of 3pecific form, we can deter-
mine the motion of the body in the nonresonant case with an error of order = on an inter-

72l of time wvariation of order e-l. Note that the last equation in system (2,12) can be

integrated; it yields 8§ = 60.

The above system 1s equivalent to a two-freguency system with constant f[requencies,
since both lrequencies are propcrtional to the axial component r of the angular velocity
vector. Therefore the applicability of the averaging method can be substantiated in the
Same way,as for a quasl-linear system. The principal assertion involves the following.
Assume ghat function X is sufficlently smooth with respect to a, vy, and that it satisfiles
a Lipschitz condition with respect to x, with a constant that is independent of ey ¥
Then on the plane of permissible values of the parameters C, A there exists a set L of
measure zerc such that if (€. 4)&8L, then for the solutions of systems (2.10) and (2.12) we
have the bound |z{# e)—&(st)(<De, t®[0. 88~'], in which £(et) is the solution of system (2.12)
averaged with respect to the phases a, v; § = (a, b, r, y, 8), D = const. The proof can
be carried out using Gronwall's lemma, on the basis of the standard change-of-variable
procedure of the averging method [2], as well as the arithmetic lemma used to estimate the
"small denomlnators" [15] that arise in setting up the substitution in question.

System (2.10) 1s a single-frequency system in the resonant case (2.11). Indeed, in-

stead of a we Introduce a new slow variable, namely a linear combination of the phases
with integer coefficients:

Amamili=))™, (U™, (UN<2 4 >0 (2.13)

System (2.10) assumes the form of a standard system with rotating phase:




r=eX(z, i(i=])""1+4, 1)
N=e¥(z, i(i—)7"1FA), 1=(C-4)4~'r

(2.14)

itz right sides being (2{f - j|m)-periodic In y. We set up the flrst-approximation system

LLa

by averaging the right sides of system (2.14) with respect to the above period of wvaria-

c

tion of the argument Y. AS 2 result we obtain the following system of equaticons for the
slow variables:
@ =ed~ty, *—sKC~'r~'b cos 8+e KC-*r* sin Opa®
bme 4=ty *+eKC~'r""a cos 8—e XC~*r—* sin Ope®*
rr=eC=y,®, ' =eKC'rt, 8'=0, A'=—eKC-'r~'cosf
LI HEw

'y v
m _‘: (M, cos y+M," sin ) dy

w*(a, b,r,9,0,A) =
2aiimil

wa*(a, b,r, ¢, 6,A) -21—‘1%_? I (M,* sin y—M,’ cos 1) dy,
i [ ]

tali=f

. --—i— L i 1
1y (a.b.r.f.a.k)__ ] _['m dv ‘ (2,15}

CEmli—4

i
pl‘.(“‘!brr|*|s|k) -Er‘:‘ﬂ' .I H"ﬂnud'f

taife il

I M,° cos a dy

1

“‘“(‘v b"l‘*‘ sll) -m

Tt 13 assumed that the variable o in the integrands is replaced by i in accordance
with (2.13). Note that the next-to-last equation in (2.15) has the solution § = &§,.

Solving averaged system (2.15) for perturbing moments of a particular form, we can
determine the motion of the bedy in Ehe resonant case with an error of order ¢ on a in-
terval of time variation of order e€~+. This can be substantlated in standard fashion

- =
(ly 24

In what follows, we will employ the above technique to consider some specific sxam-
ol perturbed movion of a rigid body.

(&
+

11
1]

3. As an example of the technique, let us consider perturbed Lagrange motion with
allowance [or the moments acting on our rigid body from the environment. We will assume
that the perturbing moments .‘41 (1 =1, 2, 3) are linear-dissipacive [15]:

@,

L

L 1

.

My=—elp, My=—elg, My=—celr, [, I&>0. {:3.00)

Here Il’ 13 are constant proportionality factors that depend on the properties of
the medlum and the shape of the body.

Let us write the perturbing moments with allowance for expressions (l.4) for p and g:
M =—g'l P, JJ(!"'-S’LQ' Mym—el,r (3:27)

In accordance with Sec. 2, for the nonrescnant case we change over to new slow varia-
bles g, b, r, ¥, 8, and we obtain averaged system (2.12) of the form

a'=—el A~'a=eRC-'r"'bcos, b'==—el\A~'b+eKC-'r'acos®
rm—gf.C-'r, ¢ =eKC-'r!, 0'=0

(3.3)

Integrating the third equation in (3.3), we obtain (ro is the arbitrary initlal wvalue

of <he axial rotational velocity):

%]



T=Teexp (—el,C-'t), r, %0 (3.4)

Equation (3.3) for y' can be Integrated with allowance for (3.4); it yilelds (y, 1s a
constant equal to the initial value of the precession angle for ¢ = 0):
e

%__ V=W &Lt lexp(aliC-11)—1] (3.5)
In addition, as can be seen from (3.3), the angfe of nutation maintains constant value
& = 8,. Substituting (3.4) for r in the fingt two equations in (3.3), we obtaln a system

of the form

¢:-—gI A~ a~e KC~1r, - exp(el,C~'t)bcosd
b el A='bH s RC-tr,~ exp(el,.C-'t)acos @

whose solution in accordance with [17] (p. 534) 1s described as follows:

amexp(—el,A~) (P, 008 n+Qy sin n=KC~'r, sin 8, sin(r+gy) ]
hm(-tfod"‘)fa’-ﬂlﬁ-@ulﬂmlr."dnﬂ.wa(n+q.)] (3.6)
e kL con Bulexp(elCott)—1] :

As a result of substitution into expressions (
(

.5) and’ (1.4) for P, Q. p, q of the
expressions for g and b from (3.6) and for r from L)

2
3.4), we obtain

L
¢

= oxp (~81,47't) [y co8 (Y=n) —qq sin(y—n)+ !

FkC='r,~" 3in 6, sin fy ~n—epe) |+4C='r,"* exp (81,C~*1) sin 8, sing
q== oxp (—el.A~'t) [ py sin (Y—n)+g0 cos (y=—n)—

~KC='ri~" sin 8, cos (1=1~@u) |+C='r,~ exp (&/,C'1) sin 6y con @

C—d
r=— .

c . C37)
AR [1—exp(~eliL=t)], pumeP, go=eQy

Thus we have constructed the solution of the first-approximation system for the slow
variables in the case of dissipative moment (3.1). Let us point out some qualitative fea=-
tures of motion in the case in question. The modulus of the axial rotational velocity r
decreases monotonically in exponential fashion in accordance with (3.4), The increment of
the precession angle y = L increases slowly exponentially in accordance with o 38 N

follows from (3.6) that the slow variables g and b fend meonotonically to zero exponential-
ly. .

In accordance with (3.7), the terms of the projections p and g that are due to the
initial values Py g attenuate exponentially. At the same time, projections p and g
contaln exponentially increasing terms that are proportional to the restoring moment k,
with the result that the quantity (F+¢)* grows exponentially.

P

IFresonance relation (2.11) is satisfied, then averaging should be performed in ac-
cordance with scheme (2.15). 1In this case, all the integrals “i' from (2.15) coincide
with the corresponding integrals My of (2.12). Therefore resonance in effect does not oc-
cur, and the resultant solution is suitable for describing motion for any ratio C/A ¥ 1.

Note that we can similarly investigate a case that 1s more general than (3.1), namely

that of a linear relationship between the dissipative moments and the angular rotational
veloelty: Me=—el/® Here I is a tensor defined by the matrix

I oy eln
thy [y olg
elm elm Iy

in which the cross terms are small as compared to the diagonal ones.

4. Let us consider motion of a rigid body in the Lagrange case under the action of a

6




zmzll mcoment that 1s constant in the attached axes and is applied along the axis of sym-
retry. In this case theé Deérturbing moments M, {1 =1, 2, 3) have the fornm
M =M =0, My=eM.*=const (4.1)

Changing over to new slow variapbles &, B, I', §. we obtain an averaged system of
gg LI & ] »

type (2.12) in the nonrescnant case:

g’ =m—pKC-'r~'bcos 8, b'=eKC-'r'acosf

| 3
F=el-tM,*, =2 KLt §'=0 Lh2d
Integrating the third equation in (4.2), we obtain
r=roteC-'M,*t (4.3)
We substitute (4.3) into (4.2) and integrate the equation for y:
=+ K (M,*)"In |1+eC- M, r, "'t (4.4)

Here wo and ry are arbitrary initial values of the precessicn angle and axlal rota-

.

tional veloelty.

is follows from (4.2), the nutation angle 8 does not change during the time of motion
of the body 6 = BO.

After replacing r by (4.3), the solution of the system consisting of the first two
equations of (4.2) can be written as follows:

amP, cos f+Q, sin f—KC="r,”" sin B, sin{ §+ps)
b==P, sin 3—0Q, cos f+KC~'r,~ sin 8, cos (B+qs) (4.5)
f=mK (M,*)~" cos 8 In |1-+2C—"r,~ M, *¢|

Substituting the resultant expressions for g and b from (4,5) and for r Crom (4.3)
into (2.5) and (1.4), we obtain

p=ps cos (1—B)—gesin (T—§)+kC-"r~" sin By X
X sin ({=f—pe ) +oC- (ry+eC~'M,*t)=' 5sin By sin @
g==pe sin (Y—f)+qa cos(1—§) —4C='ry=" sin BX
X co8 ({=B=@)+5C~"(ry+eC-'M,*t) " sin Gy cos @ (4.5)
1=(C=A)A~'("[eC-'M*t'+r], py=ePo qi=eQs

o
o

In accordance with (4.3), the quantity |r(t)|, t = et increases 1f the parameters r,,
M_¥ are of the same sign, and decreases if the signs are different. The precession angle

¢ (4.4) contains a variable component whose modulus increases monctonically in both cases:
in the first case it is bounded for finite t ~ 1, while in the second it tends to infinity
as 1t -+ -(CrO/MB*); here r + 0.

The variable 8 in (4.5), (4.6) varies analogously to yp Lif @,=*'fn, and it has the
meaning of the oscillation phase. The oscillation frequency (d8/d¢}~r,~'. The slow variables
a, b are bounded 2m-periodic functions of R.

The compenents p and q of the angular velocity vector, in accordance with (4.6), con-
tain bounded oscillating terms that are due to the nonzero initial data Py Qg» and also
an analogous term that 1s due to the restoring moment (1.2). The oscillation frequency 1is
determined by the derivative of the variable (y = 8), which has the meaning of phase.

5. Let us briefly discuss the case of a3 heavy rigid body for which the =1llipsoid of



inertia relative <o poi
o] n

s L e i ; 1
incipal moments of ! L5 C_0Se to being an ellipsold of reyolution, so that 1ts
princil: ments 3 i n
E =

ave the form Amd'(1+e8,).B=A*(1+ed,), Cw4*. Here 6., 8, are di-
mensionless constants of order unity; 4° is the :characteristic yalye sf the moments o
inertia. In addition, the center of gravity of the body may be shifted relative to p
O%* lying on the principal axis of inertia, pejative to which the moment is equal to C
an amount of order €. In this case the Problem can be reduced to the one considered in

Sec. 1 by Introducing additlonal perturbing mements that satisfy condition (1.4). It turns

out that M3 - €% 1in this case, so that M3* = M30 = 0. Following (2.12) and (2.15), we ob~

]

w O

int
by

tain I'.l-l-l-h'-l-h‘-ov Hn‘-ﬂn.‘-ﬂa“-o.
Thus, the last three equations in (2.12) assume the form rmg, ¢ =eXC-'r', 8'=0

In the approximation under consideration, the kinematic Euler equations are not per-
turbed and the motion of the body comprises regular precession,

Note that, as follows from the first-approximation equations (2.12) and (2.15), when
several perturbing moments of the form (1.4) are present their pesults are added up, and
integrals (2.12) and (2.15) corresponding to these perturbations are represented as a sum
of integrals for the individual perturbations.

The authors wish to thank A. S. Shamaev for useful discussions.
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