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SOME PROBLEMS OF THE MOTION OF A SOLID WITH A MOVING MASS

L. D. Akulenko and D. D. Leshchenko

Izv, AN S5SSR. Mekhanika Tverdogo Tela,
Vol. 13, No. 5, pp. 29-34, 1978

upc 534

Some cases of motion of a free solid containing a moving internal mass are in-
vestigated. First an analysis 1s made of passive motion of a sclid carrying a
moving polnt mass connected to the solid by an elastic coupling, with square-
law friction present. A similar problem for viscous friction was investigated
in [1,2]. 'Then the problem of response-cptimal stabilization of a free solid
Wwith a moving mass coupled visecoelastically to the solid is solved. It 1s as-
sumed that rotation is braked by means of a control moment that is bounded in
modulus; the magnitude of the constraint may vary in time. Similar problems
involving controlled motion of a solild relative to the center of mass were ex=
amined, e.g., in [3-5], and elsewhere. 2

l. Consider free motion of a solid to which a point mass M 1s attached at some point
Ol that 1s stationary relative to the solid. It 1s assumed that, under relative motion,

point m 1s acted upon by arestoringelastic force with rigidity coefficient ¢, and also by
a drag proportional to the square of the velocity, namely square-law friction with coeffi—
clent u. Then the vector equation of the relative motion of point m, in accordance with
the procedure of [1], can be written as follows:

A | +Qir=—{w=(0-p) +a p+ 1ty
+(1=m | M) [0 (0*1) +o'r+20ax'+r" ]} .

Here Q'=c/m, h=p/m,p 1s the radius vector of polnt Oy; r 1s the radius vector of point
m relative to 01; w 1s the absolute angular velocity of the solid; M is the total mass of

the solild and moving point; and the prime denotes the differentiation wlth- respect to time
t 1n the coordinate system associated with the solid. Eguation (1.1) can be more conven—
lently considered in the system assoclated with the solid; then p 1s a constant vector and
w 1ls some as yet unknown function of time.

Our problem is to investigate the motion of the system, 1.e., to find vectors r and
w that describe it as functions of time for specified arbitrary initlal conditions. It is
not#possible to find a solution of the problem in the general case. However, if we assume
that the coupling cceffleients A and Q are such that "free" motion of point m resulting
from the initial deviatlons attenuates much more rapldly than the solid makes one revolu-
tion, then In thls case the motion of the solid is similar to Euler-Poinsot motion, and
the relative oscillations of the point caused by this motion will be small. If we take

A=A, Q%0 (o=|o]|),

then the "forced" motion of system (1.1) can be written approximately in the form of the
expansion
r=—Q"%a+AQ"|a'|a+0(Q"Y)
a=a={@p)+o’xp (1.2)

As we mentioned, the prime denotes the rate of change in the coordinate system asso-
clated with the solid. Furthermore, we assume that the origin of this system is at point
O, the center of inertia of the solid and mass m. Then the equation that determines the
unknown vector (t) can be found from the condition that the moment of momentum of the
System be constant relative to 0, and can be written as follows [1]:

© 1978 by Allerton Press, Inc.
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L% @'+ (wxlo* - 0) =— (k'+axk) £1...3)

Here IB is the tensor of inertia of the solid and mass m at point Oy relative to the
center of inertia 0. We can provisionally call k the vector of the moment of momentum of
_ the moving mass m; it vanishes if there is no internal motion, i.e., rm0, r=0. TIn the gen-
eral case, taking account of (1.2), vector k is given approximately by the following ex-
pression:

k=m[px(@*r+r’') +r= () | +0(Q"*) (1.14)

Here r is computed approximately in accordance with (1.2), while the derivative r',
which is expressed in terms of w', can be found by using an expression that follows di-
rectly from (1.3): .

@'=—(I;*)" al* a+0(Q?) 350

Thus, r' can be determined wilth the requisite degree of accuracy as a function of w.
The subsequent derivatives r', w" can be similarly determined. As a result, to determine
the angular velocity vector w from (1.3) on the basis of (l.4) and (1.5), we obtain the
desired equation of the form [1]:

Ig* ' +ax(1,*-@) = (0) +0/(Q-) (1.6)

Here ®(wo) is a polynomial that contains the fourth and eighth powers of vector wj 1t
consists of terms whose magnitudes are of order Q7 and Q. 1In the general case, the form
of ¢ is fairly cumbersome and we will not give 1it here. In the nexb'section; we will set
up a solution of the Cauchy problem for (1.6) in the particular case of axial symmetry.

2. Let us investlgate the motion of a dynamically symmetrical solid that carrles a
moving point mass m that 1s connected to the solid at some point O, on the axis of symme-

try. It is assumed that, under relative motion, point m is acted upon by an elastic re-

storing force and a drag that is proportional to the square of the velocity (see §I1). We
locate the origin of a Cartesian coordinate system associated with the body at the center
of inertia O of the system consisting of solid and point mass at point Ol‘ We direct the

unit vectors e, e, e of this system in such a way that 83 coincides with the axls of dynamic
symmetry of the system. Then the radius vector p of Ol is equal to p=pe;; to be specific,
we assume that 0. In this coordinate system the inertia tensor I% is diagonal [1]:
I#=diag (I, 1, - Ts) (2.1)
The quantities I and Iy are called the equatorial and axial moments of inertia, re-
spectively. Since w=0-e (i=1, 2, 3), the zero-approximation equation of type (1.5) for com-
puting the derivatives with allowance for (2.1) can be written in scalar form:

[4);’:&0):@3, m;'-—dm,m., m."==[] (d-ni—!;[") ( 2. 2)

s To determine the right side of the equation of motion of type (1.6), we compute a and
a®™*n expression (1.2) for r. Using (2.2), we find

a=pay (0@t [+]"'—po e, ©,=(0,+w)" {3:3)
o' =pa, el 'd(w:e—00) - ’

As a result, we obtain an explicit expression for k in terms of the variables ©, ®; @,
with an error O(Q™):
k=mp*Q~*[ 20+ 0, (0t oe) el '0 foe]— (2.4)
—mp*AQ-* 1’ d|d| 0,0, (0:8,—0,82) :

Furthermore, the desired expression for the derivative k' can be computed in a simi-
1ar fashion using (2.2). The computational procedure is fairly simple, but it should be
noted that, in view of (2.2), a,=0.

Now 1if we project (1.6) onto the unit vectors e,ese, we obtain the" desired equations
of motion:

©, —do:0:=40,0,+Bo,a,’, 0,(0) =0 {2.5)
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o How,=—Aw,0:+B0,0,*, ©;(0)=0,

m;"—-——BF’t_sz(’)zn, (0;(0) == 35 ( 2 5 )
Here we have introduced the following notation to simplify matters:
A=mp' Q- le]K*, K*=Po,*+I¢'0, B=mp’AQ-"T'I"d|d|o, (2.6)

Adding the equations in (2.5), multiplied by e, Fe:, and Is’es, respectively, we can
find the first integral of motion—the modulus of the kinetic moment K=|K|:

K=K,=const, K,'=Fao  +Is'o0wn (2.7)

System (2.5) can be further integrated. We employ the following procedure [1] to
determine w. We define the projections of vector K onto the principal central axes of
inertia as follows:

lo,=KsinOcos¢, Jw,=KsinOsing, Jso;=Kcosh (2.8)

Here 8 is the angle of nutation, while ¢ is the angle of pure rotation. Since, In
accordance with (2.7), we have K=const, differentiating (2.8), we obtain, in view of (2.5)
and taking account of expressions (2.6), the following differential equations for the
spherical angles 8, ¢:

@'=BcosB, B/=rysinB|sinb|cos*0 (2.9)
The coefficients B and y in (2.9) are constant and are given by-ﬁhe folloﬁing:
P=—(d+mp'Q~Lul~E*) [+~'K, y=mp'AQ-*I+~-'d|d|K’ (2.10)

In the particular cases of spherical symmetry (d = Q) or p = 0, it follows from (2.10)
that the constant y = 0, while the equations in (2.9) can be integrated in explicit form:

0=08,, @=ptcoslytq, B, @.=const

The components of the angular velocity @..s can also be computed explicitly using
(2.BY¥s

0=, 08P, ;=0 8NP, 0:=an (W,=w)

Now let us conslder the general case y#0. Integration of the second equation 1in
(2.9) leads to the relationship

2 sec' 6 cosec B+5[ (sec* 8—3) cosec 8+ .
+31n [tg(n/4+6/2) | ] =8yt+const (2.11)

To be gpecific, let us assume that BU belongs to the Interval(0,n/2). On the basis

of (2.10), the sign of vy is determined by the sign of the parameter d, i.e., the difference
J—Iscs It follows from (2.9) and (2.11) that for I>I+ (extended solid) the angle of nuta-
tioMm " increases monctonically and tends to 7/2 ast—m, while @,—~0. For J<[+« (oblate) body
we find that 6 decreases monotonically: 8—+0 as t—w=, while ¢'—p=const. Thus, the direction

of the kinetic moment vector K in the coordinate system associated with the body tends to

a stationary state, namely to the directions of the axes corresponding to the largest
moments of inertia. If, in accordance with (2.11), 6(t) has been determined, then ¢(f) can
be found by quadratures from the first equation in (2.9). By dividing the first equation
in (2.9) by the second and then using quadratures, we obtailn (8), which, together with
(2.11), yields an implicit solution of system (2.5) using (2.8). Note that the constant
t=|¢|-*has the dimension of time and characterizes the rate at which the motlon of the solid
realigns itself, i.e., the rate of the angle of nutation 8: 6—+0 or @—+na/2. For the case of
viscoelastic coupling between the solid and mass m [1,2], a similar time constant 1 deter-
mines the time interval over which the angle of nutation decreases or increases by a factor
of e in the linear approximation. In the problem under consideration with square-law
friction for small 8, the angle of nutation tends to zero much more slowly, since @~—t'8%
In the principal (quadratic) term, the values of 8(t) are related by the expression 0(t—t)—
—-8(t)==+08(t—7)0(t),while in the linear approximation 6=const.

3. Consider controlled motion of a dynamically symmetrical solid and moving mass m I
coupled viscoelastically with coefficients & and ¢ of wviscous frietion and rigidity, |

|
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respectively. It is assumed that the polint 04 of attachment is on the axis of symmetry,

while the values of the control-moment vector relative to the center of inertia O are
pounded by a sphere and have the form

M=bu, (mira, |u|si (b>b(t)=b=0) {31}

It is assumed that Q>»ve»e’, 1.e., the natural oscillations of mass m attenuate much \
more rapidly than the solid makes one revolution [1]. Similarly to §1 and §2, the equa-
tions of controlled motion can be brought to the form

©,—doyoy=bl~'u,+A 0.0+ Nw,od 2.0
w0y tdows=bl"2,—A 00+ Nows' 1350
oy =bls'u,—~Nlle 0, 0, o(t)=0,

Here the coefficient A is determined in accordance with (2.6), while N is given by
[1] :
N=mpvQ~—I+'I-'d, v=8/m, Q=c/m

Our problem is to find the response-optimal braking of the rotations of the system,
Toms s

@(T)=0, T-min, |u|=t . (3.3)

We need to find an optimal control law, optimal phase trajectory, and minimum value
of the functional. Note that similar problems of response-optimal stabilization were
considered earlier for a solid without allowance for the possibility ®f motion of internal

masses [3,4].

A solution of the braking problem can be set up on the basis of the sufficient opti-
mality conditions of the dynamic programming method [6]. Using the functional Schwartz
inequality [7] for K', we find that the synthesis of the optimal control has a fairly
simple form: u*=—-KK-', while, in accordance with this law, the modulus of the kinetlc
moment X decreases to zero cover a finite time T¥*:

[} T
K(t,t0, K)=Ko— [ b(0)ds, [b(t)dt=K, (3.4)
1 i

-

Since, in accordance with (3.1), we have b=b,>0, the root of the second equation in
(3.4), T*=T(K,, t,), exists and is unique, where T*<t+Kpb,"'. We can establish directly by
differentiation that T(K,t) is the Bellman function of optimal nontrol problem (3.1)-(3.3).

Substitution of the familiar expression for K into the third equation’of (3.2) leads
to a nonlinear equation in m3:
wy' =—ws(BE-' +1+*NK 0.~ Ne,*) £3:5)

«;By making the change of variable «,=KR, where R is an unknown functicn, we can obring
(3.5@ to a form with separable variables:

RY =—2NK'R'(I+—*—R?) (3.6)
Since, in accordance with (2.8), IsR=cesd, as a result of integration of (3.6) we find
the relationship between the angle of nutation 6 and the time t in implieit form:

sec? 9—sec O,+1n tg* B tg~* By=— —Z—N,— JK‘ (t)dv (3.7)
Tal A

Let us now consider for simplicity the case b = const then we can find the relation-
ship between t and 8 in the following form (ts=0) :

1=1—[1+0(tg’ 0,—tg*8+Intg*0,1g*0) 1", T=t/T* (0<t<1) (3.8)
K, 5 blel'Q*

e gt TR el g
b"n2mp‘vdK|' ol A

T‘
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The accompanying figure (a and b) shows plots of the angle of nutation 8(t) for ini-
tial values 8,=n/3, n/6 and various values of the parameter o, indicated next to the corre-
sponding curves. In the approximation under consideration, we can draw the following
qualitative conclusions: as o—=*0 the gquantity g(1) tends to a right angle and to zero,
respectively; this is associated with the fact that the time © is unrestrictedly "com-
pressed" (1t 1s slow or compressed time). As g»=*w we have*® 8(tr)-+8,, slnce the angle of nu-
tation 8 does not vary markedly over the braking time T* for the rotations of the solid.
In the limit as b0, formulas (3.7) and (3.8) coincide with those obtained in [l1] for the
passive-motion problem. _ 3 g

) Now, on the basis of the known relationship between & and t, we can readiiy obtain
from (2.8), (3.4), (3.7), or (3.8) the time dependence of the axial angular velocity ws:

0s(t)=K(f) cosB(t)  (0<t<T*)

If this function is constructed, then for ®, ®:» we obtain from (3.2) the following
explicit expressions in the form of guadratures:

= KK, " expal(t) cos“il(t), @r=—0 KK, exp a(t) sin (1)
a(t)—NI od(v)de, $()={ [d+4(1)]oi(v)dx (3.9)
% L]
A () =mp* QT K*(1)

As follows from (3.9), the frequency '(T*)=0, while e,=w.KK,"expz, where Po +is'e=K".
Substitution of the resultant functions for the optimal phase trajectory 1nto the expres-
sion for the synthesis of the control u* yields the optimal programmed control. Thus, our
problem of response-cptimal stabilizatlon of the system may be regarded as solved.

The authors are grateful to F. L. Chernous'ko for discussions and valuable advice.
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