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EVOLUTION OF ROTATION OF A TRIAXIAL BODY
UNDER THE ACTION OF THE TORQUE
DUE TO LIGHT PRESSURE

D. D. Leshchenko

(Received 19 March 1996)

A vast literature (e.g., see [1=7] and the bibliography therein) deals with the investigation of the motion
of a satellite about the center of mass under the action of torques of various nature (gravitational, magnetic,
light pressure, and the like). The evaluation [1] of the perturbing torques shows that the torque due to light
pressure exerts a considerable effect on the space vehicles at altitudes exceeding 3500040000 km over the
Earth surface. We apply the averaging method to investigate the motion of a spacecraft with respect to the
center of mass caused by light pressure. It is assumed that the spacecraft is nearly dynamically spherical and
that its surface is a surface of revolution. The coefficient of the torque due to light pressufe is approximated
by a trigonometric polynomial.

1. BASIC ASSUMPTIONS AND STATEMENT OF THE PROBLEM

Consider the motion of a spacecraft (satellite) about its center of mass under the action of the torque due to
light pressure. The center of mass of the spacecraft moves along an elliptic orbit around the Sun. Let us introduce
three right-handed Cartesian reference frames centered at the center of mass of the satellite [1, 2]. The reference
frame OXY Z moves translationally so that the Y -axis is normal to the plane of the orbit, the Z-axis is codirected with
the position vector of the perihelion of the orbit, and the X -axis is codirected with the velocity of the satellite center of
mass at the perihelion. To define the direction of the angular momentum L of the satellite about the center of mass in
the frame O XY Z, we introduce the angles p and o, as is done in [1, 2, 4]. To construct the reference frame Ol L,L
associated with the vector L, we draw the axis L; in the plane OY L so that L, is perpendicular to L and forms an
obtuse angle with the Y -axis. The axis L, complements the axes L) and L to a right-handed trihedral. The axes of
the coordinate frame Oxyz rigidly attached to the satellite coincide with the principal central axes of inertia of the
satellite. The relative position of the principal central axes of inertia of the satellite and the axes L, L, and L; are
defined by the Eulerian angles ¢, v, and 6 [1, 2, 4]. The direction cosines a;; of the z-, y-, and z-axes in the OLy L, L
reference frame are related to the Eulerian angles ¢, 1, and @ by well-known formulas [1].

We neglect the moments of all forces apart from those of the light pressure. We assume that the surface of the
satellite is a surface of revolution with unit vector k of the symmetry axis pointing along the z-axis. Inthis case [, 3, 5],
the torque M due 1o the light pressure forces applied to the satellite is expressed by

RZ 2 : . E BE
M= a-c(es)?g er Xk, ac(g) ﬁg =peS(es)zgles), Pe= Tﬁ—ﬂ (L1

where e, is the unit vector of the position of the satellite center of mass; &, is the angle between the vectors e, and k
defined so that e, X k| = sing,; R is the current distance between the center of the Sun and the center of mass of the
satellite; Ry is a fixed value of the variable R, for instance, at the initial time instant; a.(g,) is the coclficient of the
torque due to the light pressure; S is the area of the shadow on the plane normal to the light flux; zj is the distance
between the center of mass of the satellite and the center of pressure; p, is the light pressure at the distance R from the
center of the Sun; e is the velocity of light; Fy is the magnitude of the radiant encrgy flux at the distance Ry from the
center of the Sun. If Ry is the radius of the Earth orbit, then pyy = 4.64 - 107°N/m?.
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2. TRANSFORMATION OF THE EXPRESSION FOR THE FORCE FUNCTION,
AVERAGING AND CONSTRUCTION OF THE SYSTEM OF THE FIRST APPROXIMATION

Consider the nonperturbed motion corresponding to £ = 0. In this case, Egs. (1.3) and (1.4) describe the motion
of a spherically symmetric body, the light pressure torque (1.1) being equal to zero. For this case, it follows from
system (1.3) that the variables o, p, L, f, and ( are constant, whereas the variable 4 is a linear function of time

P = it + i, b = const, 2.1
Jo

corresponding to the uniform rotation of the satellite about the vector L of angular momentum, which moves trans-
lationally. For small € # 0, in system (1.3), (1.4), where 4, B, and C are related by (1.7), the variables o, p L, 8,
and i are slow variables and ¢ and v are fast variables. To obtain the solution in the first approximation, it suffices
to substitute ¢(¢) given by (2.1) and v(¢) from the solution of Eq. (1.4) into the right-hand sides of (1.3) and then
average the right-hand sides with respect to time. Suppose that mjwy + 11 L /Jo #0 for any integer m; and n, that is,
the frequencies wo and L/.Jo are not in resonance. In this case, averaging over time can be replaced by independent
averaging over the variables ¢ and v according to a special scheme [2]. By virtue of (1.4), averaging over time for
functions depending on v is reduced to averaging over v as follows:

& 1 ,243/2 .
MAf0)) = o f f@ydt= o / dog ) Jeday =(1—82]3/2M,,{ L} 2.2)
0 0

(1 +ecosv)? (1+ecosw)?

The factor cos™! ¢ in the expression (1.6) for the force function can be represented incthe form

cos™ &5 = (d + g cos )™, (2.3)
where
d = cos 8 sin p cos(o — 1), v=v-x, g = /sin? 8 [sin%(o — v/) sin2 p+cos? pl,
sinf sin(g —v) . sin# cos pcos(a —v)
cosy = : = - ——, siny= : . : ;
\/sin? @ [sin?(o — v) sin? p + cos? p] \/sin? @ [sin%(¢ — v/) sin? p + cos> o]

Using the binomial theorem, we can express the right-hand side of (2.3) as

i+l

(d+gcosv)™! = Z Gk, cos® v (ghd ¥, (2.4)

k=0

Using the well-known expressions for the direction cosines a3, 83, and 73 of the z-axis in the reference frame
OXY Z [1], we can obtain the average of the force function with respect to 1. To this end, consider the integral

1 2r n+l
e 1 (d+ gcosv)* ! dv = Zc_ﬁﬂgkdmi'k[k‘ (2.5)
k=0
where
k4
o k. _ _ (@m-1!
Ik = " : COs™ v d‘(}, Irg,n+1 = 0, Izm = W

Thus, relation (2.5) can be represented as

I El(n+1)/2]

1 - Dt
= o (d+gcos _U)n+l dv = Z CiTi (gimdm]-2'm)iz"rn—l)_7 (2.6)
T Jo (2m)!!
m=0
where E|[z] is the integer part of z. Averaging of the force function over t with allowance for (2.6) vields
El(n+1)/2]
anR3 = Zam, (2m— 1)1
m=0 h

To simplify the notation, we use the same letters for the original and averaged variables.
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Let us now carry out averaging over v according to (2.2). Note that since the center of mass of the satellite
moves along an elliptic orbit, we have 2 = /(1 + e cosv), and hence, according to (2.2) and (2.7), the expressions
(1 + ecosv)? in the formula for U, are canceled.

Set u = o —v. Then the variable d in Eq. (2.3) can be expressed as d = hcosu, where h = cosfsinp. Let us
represent the expression for g™ in (2.7) in the form

g*™ = {sin? @ [sin%(o — v) sin® p + cos? p]}™ = (b + g sin® w)™, b=sin’fcos’p, ¢=sin®Hsin’p.

By once more applying the binomial theorem, we obtain
m
(b+gsin®uw)™ = Z C* (sinu)?*(g¥p™F).
k=0

For the second averaging with respect to the variable n = o — v, consider the integral

T

1 2w ‘ 1 2 !
e / (b + gsin®u)™(hcosu) 2™ du = Z Cﬁ](qkbm_ka— [ (sinw)?*(h cos u)™'2" dy
™ Jo T Jo

k=0
m 1 2
=2 —k . . 4 Y
- Z hn.+1 ﬁﬂlcﬁt(qk pm L)F (S‘In U)ZL(COS u)u+l 2 i
tJo
k=0

This integral can be expressed in an explicit form [8]; for n = 21, it is zero. .
Letn be odd, i.e., n = 21 + 1. Then we have

E=0.1,....m; m=0,1,....,E[(n+1)/2]=1+1.

Averaging the expression (2.7) with respect to . = o — v yields

i+l m

Uspey = =0 E ZAtmk.(COS9)2“”7"1)(811‘1 8)*™ (sin p)2(1+1—m+k)(cosp)?,f_m—kj, (2.8)
m=0 k=0

where ; 3
- ayRY(1-€2)Y? _om ok @m=DNQE-DV 2L+ 1=m) - 11!
L 20+ P2 7 A = Cygan O Cm)! 2k +1+ 1 —m)]!! '

The force function for the coefficient of the light pressure torque of the form (1.2) is represented as

Q
U@B.p)=> Unu®.p),  Q=E[N-1)/2]. (2.9)
=0
el Thus, in the first approximation, the coefficient (1.2) of the light pressure torque has the form
Q
e ~ G, = Z a1 (cose ), (2.10)
=0

since the even harmonics vanish on averaging.
By calculating the partial derivatives 0U/dp and 90U /96 of the function (2.8) and taking into account the fact that
9U[8o = OU [0y = OU | Dyp = 0, we arrive at the averaged system of the first approximation in the form

26 8U ;
S Tes Bg ol L=
é:LsinSsinnpcosnp(%—%), (2.11)
in 2

_costyp 24, _@E
Lsin® 08"
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where
oU Qo+l om -
Fp_ = Z Z Z At (cos )X (gin §2™ (sin PRI (og p)m—k)-] [(L+ 1) cos® p + k—m],
1= m=0 k=0

st Q I+l m
(:;_;’ it Z Z Z Agmk(siﬂ p)2(£+l—m+k:)(COS p)Z{m—k}(COSg)Z{!—mHI (Sm 8)2m~1 {m i (Z i I)sin2 9]

1=0 m=0 k=0

Here the coefficients &; and Ay are defined in (2.8). Note that the coefficients ay of even powers of cos £, in Eq. (1.2)
vanish on averaging. In what follows, we investigate system (2.1 1). The angular momentum is constant in magnitude
and inclined at a constant angle Lo the normal to the plane of the orbit. Consider Eqs. (2.11) for the nutation angle #
and the angle of proper rotation . These equations describe the motion of the vector L of the angular momentum
relative to the body.

3. INVESTIGATION OF THE EQUATIONS FOR 6 AND ¢

The equations for # and  in system (2.11) can be reduced to the form (in the slow time &)

6" = sin @ sin ¢ cos ¢,

I _ c 6( - 2, )_ 2‘51 a[fr(gs o} g . (3].)
YT T Brsing 08 k
where ] 1 ] 1
‘ 24
:L 2 = ——, = — - —, = — - —.
e P B P=4 B B¢

Here the coeflicient &; is defined in (2.8) and the derivative U8, po)/08 is given in (2.11); Ly and po are the initial
values of the variables L and p, respectively. With allowance for relations (1.7) and the assumption that ay,| ~ =
(t=0,...,@), we have 3,7, ~ £. One can verily by substitution that system (3.1) has the first integral

; ; 49, .
¢ = sin® 6 (= sin’ ) - == £(6, po), (3.2)
4
where
Q I+l m n I—rr ) (_l)z(ﬂiﬂ 9)2(m+i)
s ke i) >
J0.0=3 Y A | 33, VD
1=0 m=0 k=0 =0
I—m - - :
1+1 (_] )‘(sm 9)2(n1+u+l} . i "
_ 5 - (Sin pU)Z(JH T HCJH(COS po)zt_n kJ’
i=0

Itis convenient to represent the first integral (3.2) in the form

46

c=sin?4 (p—sin?p) - 3L

F(@, po), (3.3)

where

g d Vi N 2i] | s
F6.po) = Z{ gy o DA e 1

W+ " i :
s 2 . i+1 [2(1+ 1

I m  bem (i QY2 i-m ifeio gy Hmatisl)
m (-1)*(sin@)=m I+1 . (=1)(sinf) ; 5 T
+ Ay ; o Cl_ : sin 20l+l-mn+k) cos w2lm—k)
ZE Zk : h“k[ 2 Z ; m+i 2 Z - b m+i+] (sinpo) (cospo)
m=l k= i= =

1Y (eingn20+1) 1 Tl
[2[;8(:)1 )J]T}'I. : (Sm92) Zcﬁl(Siﬂﬁo)zk(cospu)zf“]*k} Ehel }

o (2k)!!
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For the case where the light pressure torque does not act on the system, i.c., for agi1 =0 (1=0,...,Q), system (3.1)
can be reduced to the form

§' =sinfsingcosy, ¢ =cosf(pu- sin® ). (3.4)
For the case n = 1 (I = 0) [7], the first integral (3.3) is expressed as
c=sin’f (u* - sin? ) = sin? B (u* — sin® o) = const, (3.5)
where

P e’ 1 ale
— Q = - —
- ’ 2 P23

(1 —82)3/2(1 - % sin’ po).

The expression (3.5) for p* coincides with the corresponding expression in [7T] up 10 a factor of % This is accounted
for by the fact that the function a.(cosg) is represented in [7] in the form a. = ag + 2a; cosg,. As was already
mentioned, the term ag vanishes on averaging.

4. A SPECIAL CASE

Consider the function a.(cos &5) of the form

Q
G = Z Ak cos?* g5+ 03 cos” &. {4.1)
k=0 T b i
In this case, the equations for 6 and i in system (3.1) become (only the terms generated by the cocfficient a3 are
retained)
d

' =sinfsinpcosy, ' =cosf (i —sin? - asin® @), (- = ¥

() (4.2)

where

v 3 a 2
p=——-ajs, « Ry

oo i 4 sin? po (4 - 5sin” pp)
8 T 64 P}

8 — 40 sin? py + 35sin* py

(1-e2*/2(8 —40sin? po + 35sin* po), s =

The variables £, 3, and ~y are defined in (3.1). With allowance for relation (1.7) and the assumption that ay ~ &, we
have 3, a, v ~ £.
System (4.2) has the first integral

c=sin®g (p—sin® - Fa sin®§) = sin” fo (- sin” o — Lasin® fy) = const. (4.3)

This integral can be found either directly or from the expression (3.3) for the first integral for the case in which the
function a, is approximated by an arbitrary trigonometric polynomial. In the latter case, we must set 7 = 3d=1in
Eq. (3.3).

Let us qualitatively investigate the phase plane 8o of system (4.2) with the first integral (4.3). In this system, the
variables 8 and ¢ range in the intervals 0 < s Tand 0 < @ = 27, respectively, and the parameter p can assume any
value (-0 < p < +0o0) depending on the relationship between the moments of inertia. The domain D of admissible
values of the parameters (cv, () is shown in Fig. 1.

We equate the right-hand sides of system (4.2) with zero to determine the critical points of this system. In doing
s0, we can separate four cases.

Case 1. cosf=0,6 = £1m; ¢ =0, 7 £ 3. These critical points exist for any (jz, @).

Case 2. sin6=0,0=0,7; p—-sinp=0,0Sp< 1, p==Farcsiny/lp== arcsin /g + 7. These critical points
existin the strip0 £ p <1,

Cased. ¢=0,m p-asin?0=0,0<pja<] sinf ==+ /a, § = +arcsin \/pu/a, § = T arcsin Vpfatm.
These critical points exist in the interior of the angles hatched with horizontal lines in Fig. 1, ie., for p < il p>0
anda > 0or uzaif p<0anda <0
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o s

Fig. 1

Case d. p=%57, p—1-asin?§=0,0<(u-1)/a<1,0=+arcsin/(u— 1)/, § = + arcsin /(z - )/a+m.
These critical points exist in the interior of the angles hatched with vertical lines, i.e., for p=1Zaif x—1>0and
a>0orp—-12aifp—1<0and o <0.

We can consider various characteristic cases with regard to the choice of the paramelers p and . These cases,
identified by letters a through g, correspond to geometric images in Fi g. 1 as follows:

ay and a; correspond to the unhatched parts of the jia-plane outside the angles;

b corresponds to the unhatched parallelogram in the central part;

¢ corresponds to the half-strip between the inclined lines hatched with horizontal lines;

d corresponds to the half-strip between the inclined lines hatched with vertical lines:

e corresponds to the “vertical” half-strip on the first quadrant of the ua-planc hatched with horizontal lines;

f corresponds to the “vertical” half-strip on the fourth quadrant of the piae-plane hatched with vertical lines;

g1 and g» correspond to the double-hatched angles in the first and the third quadrants of the api-plane, respectively.

Figures 2-5 present the phase portraits of the averaged system constructed numerically for the above cases. It
follows from Eq. (4.3) that all phase trajectories are symmetric with respect to the lines # = %?‘T and ¢ = %7.-. Therefore,
it suffices to depict a quadrant of the phase portrait for 0 < f < -é—rr, 0<p= %7.'_

In Fig. 2, the family of phase trajectories of the averaged system in the f-plane is presented for ;2 = -5 and
a = -2 (case ay). These curves correspond to the motion in which the system oscillates in the angle # and oscillates
(inside the separatrix) or rotates (outside the separatrix) in the angle . For case a; (it = S, o = 2), the behavior of
the phase curves is similar. For case ay, the system has a center-type critical point (3, +7) and a saddle-type point
(57, 0); for case as, the point (L, 0) is a center and (L, ) is a saddle.

The phase trajectories for p = 0.8 and a = 0.5 (case b) are shown in Fig. 3. The critical points are (3m, 0),
(57, ), and (0, 0.1071). For iz = 0.8 and a = 3 (case €), the phase curves describe oscillations in the variable 8
and oscillations or rotations divided by a separatrix in the variable ¢ (see Fig. 4). The critical points for this case are
(g7 ), ($7, 0), (0, 1.1071), and (0.5426, 0).
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The phase trajectories demonstrate a similar behavior for case f (¢ = 0.8, @ = —=1.5). The critical points in this
case are ({,—fr 0), (%w é—?T] (0, 1.1071), and (0.3738, %ﬂ)

Figure 5 presents the phase trajectories for ¢ = 3 and @ = 5 (case g1). These trajectories describe oscillations
in the variable 8. In the variable ¢, oscillations occur inside and above the separatrix passing through the point with
a= %w and = 0.3225, and the region below the separatrix corresponds to rotations. The critical points are (%” 0),
(7. 4m). (0.6847, +), and (0.8861, 0). For case g» (u = -2, @ = —5) the phase curves demonstrate a similar
behavior; in this case the separatrix passes through the point with § = %fr and ¢ = 0.9553, and the critical points are
(+m, 0), (¥, ), (0.8861, +), and (0.6847, 0).

5. SPECIAL CASES OF MOTION OF THE BODY

The value 6 = 0 is a critical point for the first equation in system (4.2). The equation for ¢ in the case § = 0
becomes a separable equation. The integration of this equation yields

tang = [ tan[£r€ + arctan( "' tan wo)l, L=+pf(p=1), r=+/pmu-1), &= Lybt, (5.1)

where the upper and the lower signs of the variable r correspond to i > 1 and p < 0, respectively.
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For 0 < p < 1, we have
.aexp(JE) —w

g3 aexp(JE) +w’ (5.2)
where
a=L+/(-wfutange, J=2/u(l-, w=1-vI-w/atanpe j= /=,
For small 8, system (4.1) can be represented as
6" =0sinfcosp, ¢ = pu—sin’ep. (5.3)

The terms of order > 1 in § are omitted in system (5.3). For small 8, the equation for ¢ coincides with the corresponding
equation at @ = 0, and hence, its solution can be represented in the form (5.1) or (5.2).
By substituting (5.1) into the equation for § in system (5.3) and by integrating this equation, we obtain

6% = 63.’.':':2({2 cos? o + sin? ¢g)t! {cosz[irf + arctan(l™! tan )] + 12 sinz[:lzr‘f +arctan(l™! tan ()] }il, (5.4)

where the upper and the lower signs correspond to > 1 and p < 0, respectively. .
For 0 < u < 1, with allowance for (5.2), we obtain '

6’:89\/G’exp(2J§)+Hexp(J§)+ chp(—%.ff), 25

where
G=a’(1+, H=2aw(-j?), V = w1+ 5%).

Thus, we have investigated the evolution of rotations of a nearly spherically symmetric satellite acted upon by the
light pressure torque. The coefficient of the li ght pressure torque is approximated by a trigonometric polynomial of an
arbitrary order. New qualitative properties of the rotations of the satellite are established.
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