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Abstract—We study the fast rotational niotion of a dynamically nonsymmetric satellite about the
cetiter of mass under the action of the gravitational torque and the drag torque. Orbital motions with
arbitrary eccentricity are assumed to be given. The drag torque is assumed to be a linear function

of the angular velocity. The system obtained after ihe averaging aver the Euler—Poinsot niotion . i
is studied. We discover the folluwing phienomena: the modulus of the angular monen®fii and the "
kinetic energy decrease, and there exist Guasistationary regimes of motion {along the polhiodes). The
orieritation of the angular momentum vector in the orbital frame of reference is determined he
general case is studied numerically, and an analytic study is performedin a neighborhuod of the axial
rotation and in e case of small dissipation,

e
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I. STATEMENT OF THE PROBLEM

Consider the motion of a satellite ahout the center of mass under the combined action of gravitational
atd drag torques. The rofational motions are considered in the framework of the model of dynamics
of a rigid hody whose center of mass moves in an elliptic orhit around the Earth. At present, dynamic
problems generalized and complicated by taking into account various perturbation factors still remain
topical. The papers [1-8] study rotational motions of hodies about a fixed point under the action of
perturbing torques of varous nature (gravitational, aerodynamic, electromagnetic. ete.): these studies
are close to those in the present paper.

We introduce three Cartesian coordinate systems whose origins coincide with the satellite center of
inertia [1, 2]. The coordinate system Oz; (i = 1, 2, 3) moves translationally together with the center
b1 inestia: the axis Oiry is parallel to the position vector of the orhil perigee, the axis Oy is parullel
to the velocity vector of the satellite center of mass at the perigee, and the axis Oy is parallel to the
normal to the orhit plane, The coordinate system Oy (1= 1. 2. 3)is attached to the satellite and oriented
along the angular momentum vector G. The axis Ouys is directed along G, the axis Oy lies in the orbit
plane O ey, and the axis Oy, lies in the plane Oxsys and is directed so that the vectors ¥1i. Yo, Y3 form
a right trihedral [1—-3]. The axes of the coordinate system Oz; (7 = 1, 2, 3) are related to the principal
central axes of inertia of the rigid body. The mutual position of the principal central axes of inertia and
the axes Oy; is determined by the Euler angles. The direction cosines o, of the axes z; with respect
to the system Oy; are expressed via the Enler angles », 2, # by well-known lormulas [1]. The position
of the angular momentum vector G with respect to the center of mass in the coordinate system O, is
determined by the angles A and 4 as shown in [1-3].
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The equations of motion of the body about the center of mass can be written in the form [2]
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Here the L; are the external torques about the axes Oy, G is the value of the angular momentum,
and the A; (¢ = 1, 2, 3) are the principal central moments of inertia about the axes Oz,

We write the projections L, of the external torques, formed by the gravitational torque L? and the
external drag torque L7, onto the axes Oy; in the form introduced in 12, 6]. Here we present the projection
onto the axis Oy, {the projeciions on the oiher axes can e written in a similar way):

s i 3
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p=1
where wy is the angular velocity of the orbital motion and e is the orhit eccentricity.
In some cases, along with the variable 6, it is convenient to use an important characteristic, the
kinetic energy T, as an additional variable. Its derivative has the form
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The satellite center of mass moves along the Keplerellipse with eccentricity e and revolution period €.
The true anomaly ¢ depends on time ¢ as foliows:

dv wy(l +ecosv)? 2z |4
T~ a4t "

Consider a dynamically nonsymmetric satellite. To be definite, let its moments of inertia satisly
the inequalities A; > Ay > Ay, We assume-that that the angular velocity w of the satellite motion
about the center of mass is significantly larger than the angular velocity wg of the orbital motion;
Le, = = wy/w ~ Aywn/G < 1. Then the kinetic energy of the body rotation is large compared with
the perturbing torques.

In the present paper, we assume that the drag torque L can be represented as L™ - Tw, where the
tensor I has constant components I, in the body-fixed frame Oz [1, 6]. We assume that the medium
drag is weak and has the order of =2, |[Ij|/G ~ =2 << 1, where [|I|| is the norm of the matrix of the drag
coeflicients and Gy, is the satellite angular momentum at the initial time.

We pose the problem of studying the solution of system (1.1)=(1.4) for small = on a large time
interval £ ~ = 2. We solve this problem by the averaging method [9].

2. THE AVERAGING METHOD PROCEDURE
Consider the unperturbed motion (= = 0), where the external torques are zero. Then the rotation of
the rigid body is an Euler—Poinsot motion. The variables G, 6, A, T'. and » become cm?stants, and 2, 1),
and ¢ are functions of time ¢. The slow variables in the perturbed motion are G 8, AT, and v, and the
fast variables are the Euler angles »», v, and 4.
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Consider the motion under the condition 274, > G? > 2TA; corresponding 1o case in which
the trajectories of the angular momentum vector surround the axis Oz of the maximal moment of
inertia [10]. We introduce the quantity

k_? i (4?. == A;q){‘!!?h . (;2:1
(A — A2)(G? — 2TAz)’

In the unperturbed motion, it is a constant, namely, the modulus of the elliptic lunctions describing this
motion.

To construct the averaged system in the first approximation, we substitute the solution of the
unperturbed Euler—Poinsot motion [10] into the right-hand sides of Egs. (1.1) and (1.3) and periorm
averaging over the variable v and then over the time # with the dependencies of w and & on 1 [2] taken
into account. The previous notation for the slow variables 0, A, 7, and T'is preserved. Asg 4 result, we
nbtain the following four equations:

0<k <1 (2.1
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Here K (k) and E(k) are the complete elliptic integrals of the first and second kind, respectively.
By differentiating the expression (2.1) for k* and by using the last two equations in (2.2), we obtain a
differential equation independent of the other variables: -

dk? . o E(k
B i = = =) + D DRI,
g (k) (23
g 2]22511“'1:3"?* 11 A345 — [33/1;.&‘1-3 f t— e N - Ay Ag g =
;-# (1334 — 11 43) Ay N T IggAy —Ip Ay

Here ¢, is a constant. The value k% = 1 is associated with the relation 2TA4; = ¥¢_which corresponds
to the separatrix for the Euler—Poinsot motion.

It follows from Eqs. (2.2) that the medium drag results in the evolution of both the body kinetic
cnergy T and the absolute value ¢ of the angular momentum. It is casy to see that in the first
approximation only the drag force causes them to vary and the equations contain only the diagonal
coefiicients I;; of the friction torque matrix. The terms containing the ofi-diagonal components I; (2 # )
disappear after the averaging. The variations in the angles X and 4 are caused both by the drag force and
the gravitationat aftraction.

Lquation (2.3) describes the averaged motion of the endpoint of the angular momentum vector G
an the sphere of radius (. The third equation in (2.2) describes the varation in the sphere radius in the
course of time.

The expression in braces on the right-hand side of the equation for & in (2.2) is positive
(for A; > As > A3), because the inequalities (1 — KK < F < K are satisfied [11]. The coefiicient
of each I; is a negative function of k2. and moreover. all of them cannot be zero simultancously
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Fig. 1.

Since ¢ > 0, we have dG /dt < 0; ic., the variahle G strictly decreases for any k% € {0, 1]. In a similar
way, one can show that the kinetic energy also strictly decreases. ' %
The main stage in the study of the body motion is the analysis of Eq. (2.3). Note that the evolution
of k% is affected only by the medium drag, and since this equation can be integrated independently. the
influence of the gravitational moment and the drag torque is partly separated. The total separation is
tmpossible in this case, because the slowly dec reasing variables ¢ and 7" occur on the right-hand sides
ol the equations for A and 4 in (2.2). Equation (2.3) coincides with the similar equation for the free spatial
motion of a body with a cavity filled with a fluid of large viscosity [12] and with the equation descri hing
the motion of a heavy rigid hody in a dragging medium [6].
One can readily verify that the variable  in (2.3) satisfies the relation
Az — A
Asxi + Arxe
which implies that, since the variahles x1 and xz can take any values, the variable y varies in the
range (—oc, +ac) depending on the problem parameters A; and I; (i = 1, 2, 3). The case in which
inequalities x; > 0 and vy > 0 hold and henee [x| <1 was studied in[12]. An equation of the férm (2.3)
for a rigid body with a cavity filled with a strongly viscous fluid, where the parameter x varies in the
range x| < 3, was considered in|13]. A similar equation holds for x € (—aoc, +-o¢) in the case of a fast
motion of a heavy body about a fixed point in a dragging medium [6].

The numerical integration of Eq. (2.3) with the initial condition k4(0) = 1 shows that the function k2
decreases monotonically as € increases. and the larger x, the faster this decrease is. Numercal
calculations performed for Eq. (2.3) are shown in Fig. 1 Tor x = =3;0; 1; 3: 5; 8 One can see that
the larger x, the faster the function k¥ decreases. We note that some new qualitative eflects appear
for x < —3. and for x > 3, the character of the solution remains the same as for [x] < 3.

Equation (2.3) for &% admits stationary points k2 — k2 for y < —3, where, independently of 7 and 7',
the variable &% remains constant by virtue of Eq. (2.3) for an appropriate choice of the initial conditions.
We note that for x > —3 such stationary points (except for k = 0 and k = 1) do not exist.

To find the quasistationary solutions k? - k2, we equate the right-hand side of (2.3) with zero and
solve the equation thus obtained for x:

K2 —1 4 (14 K)E(k)/K(k) 2.4
YT T REREER) ~1] &

The graph of the dependence of y on k*, determined numerically, is presented by curve 1 in Fig. 2,
which shows that for any x < —3 there exists a unique value k? ¢ (0.1) corresponding to the
quasistationary motion. The numerical calculations were performed for &2 = 0.2: 0.4; 0.6: 0.8. In Fig. 3,

v Xo=dpA —Indy, xg = Ipndy — Ipn Ay,
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Fig. 3.

we see typical graphs of the functions k%(x,£) oblained by the numerical integration of Eq. (2.3). The
solid curve was obtained for k2 = 0.8, and the curve with filled symhols was obtained for b2 =02 For

‘*}lu given values of kZ, the value x = x, was determined according to Eq. {2.4). Then Eq. (2.3) was
integrated numerically for the value of x. thus obtained. I“aLh graph contains three branches. The initial
condition for the upper branches was taken in the form k2(0) = 1. The lower two branches for each graph
were constructed for the initial conditions 4%(0) = k2 /2. In this case, the increasing branch corresponds
to integration for £ > 0, and the decreasing branch is the mirror rellection in the straight line £ = 0 of the
dependence k%(x, &) obtained for & < 0.

Equation (2.3) is autonomous; therefore, the solution &%(x, £) can be determined for arhitrary initial
conditions. The choice of the corresponding branch ol the graph permits determining the character ol
the variation in k2. The upper branch is taken for the initial value k? = k2 > k2; i k2/2 < k2 < k2, then
the middle branch is taken. Ii k# < k2/2. then the lower branch is taken, for which the motion occurs
with negative € as k? increases until k2 — kZ/2: after that. we switch to the middle branch.

Consider th: system consisting of the ﬁrst two equations in system (2.2) and Eq. (1.4). They can he
written as

s ""IIA{V 3, A), A= ui(%ﬁk(!l.{)-.)\). i = “, 3 —i 1 + eu)-\.’/]z hie)={1— r-,’z}‘“?”:?‘,
L

-
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Here A and A are the coefficients on the right-hand sides in the first two equations in {2.2), 4 and A are
slow variables, and 1 is a semislow variable.

We ohtain a system of special form, which we solve by a modified averaging method according to the
following scheme [ 14}

2 2w
. wih(e) [ A(Nbp) - wih(e) [ A(AOv)
a 4] i : ok s i % B gk ; 2 b £ i
2 / (1 +ecosp)z 2r / (1 +ecosv)? w

i 1]

After the averaging, we have

3wiN*cos d oo
e (2.5)

§=0, A= —
’ AGh{e)
We preserve the notation for the slow averaged variables. We note that the action of the applied forces
does not change the angular velocity 6 and that the deviation of the vector G from the vertical remains
constant in this approximation.
The resulting system (2.5), the last two equations in system (2.2), and the equation

AEe I3 A, —~ 11143 { 9 5, E(K) i
s, g I L ST ] [ 1 _f“_ -y i + i A 9 6
ad oy 00— - kR o)

can be integrated numerically. All these equations are nondimensionalized and are considered jor smaft

time 7 ~ =*t. The equations for the derivatives of the kinetic energy 7' and the angular momentum (7

in system (2.2}, as well as the dimensionless equation for &% of the form (2.6) with respect {o the small

time 7, are written in the same form. System (2.5) becomes

: = IN*cosd

a=h A AGhe)
The integration was carried out for the initial conditions ((0) — 1, 40} = 0.99, a(0) — 0.785 rad,
and A(0}) = 0.785 rad and for the following values of the principal central moments of inertia of the
body: 4; = 3.2, Ay = 2.6, and A3 = 1.67. Numerical calculations were performed for different types of
orbits with eccentricity ¢ = 0 for the circular orbit, e = 0.04473 jor the orbit of the lirst Soviet satellite,
e = 0.0487 for the orhit of the third Soviet satellite, and e = 0.421 for a strongly elliptic orhit | 1]. Two
possible versions ol the drag coefficients were considered: fi1 = 2,322, Iy = 1.31. I3z = 1.425 and
1) = 0.919, Tpg = 5.288 I33 = 1.666. In the first case, y in Fq. (2.6) was negative, namely, x = —4.477;
inthe second case, x — 3.853. Numerical analysis shows that the functions G(t) and T(t) are monotone
decreasing (Figs. 4 and 5). One can see that for positive x (curves 2) the functions decrease faster hut the
tunction G(¢) tends to the asymptote slower for a larger time interval. In hoth computational versions,
the function A = A(t) of the variable y is a decreasing function, but it decreases faster in the first version.

::J, 31‘[ should be noted that in both versions an increase in the orbit eccentricity e results in a faster decrease
ol the angle A. In Fig. 6, we present the graphs of the function A = A(¢) fore = 0 (curve 7)and e = 0.421
{curve 2) for positive x. One can see that the angle A decreases with time: i.e., the vector G rotates
clockwise around the normal to the orbit plane and remains at a constant angular distance & from it.

3. ANALYSIS OF THE LIMIT CASES
3.1, Cousider the body motion for small &% < 1, which corresponds to the motions of a rigid body close
7 to rotations about the axis A;. In this case, one can simplify the right-hand side of Eq. (2.3) by using
the expansions ol complete elliptic integrals in series in &% [11]. Then (2.3) can be integrated, and the
asvmptotic solution has the form

k- Cexp [_ = '> } = kiexp(—pt), p=ay3+a3—2a¢, a;= (¢ -1,2,3), (3.1

where (7] > 018 a constant.
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For small k%, the analytic expressions for the angular momentum and the kinetic energy can he
obtained explicitly:

G = Ghexpl—ait + bexp(—pt)], T = Thexp|—2at + aexp(—pt)],
k?
b= mf{nfi] (2A2443 "‘141}12 —}'13}13) -}---(‘12141,43(141 “A4:3)+(23A1A3(441 -—Ag)] s {32}
fe 4
4 = m[ﬁg (A — 443) +ag(A) — 442} + Uc'i(f'lg + Aq — 24, :'l}
Equation (2.5) for A with (3.2) taken into account can he written as
A

— = ¢explart — bexp(—pt)] (d +u{n expla — 2b) exp(-pt)] - 1}),
3wd cos §
4(1 —ag )312(:“

[ts solution has the form

24,15
Gy

C.D =

3
d=Ay1 A3 —241., p- -2—(/12 F A, gy

X= ;_j{ {“‘ - d)bk[“ﬁ((*—k: b) + ’?(_kb“q—)t i !"‘”Ikir‘}'{wks .'J'_‘) + ‘}'(“k! TET)]}
k= -Oi r=3b—a, ¥=—pl
el
Here v{n,x) is the incomplete gamma function [1 1], 6 > 0, and = > 0.

4.2, 1tis of interest to study system (2.2) in the case of small diagonal drag coefficients, i.e., for
Iy = piny,  Iyg = jedgs,  Tag = piaa, p <L (3.3)
The angular momentum function ¢ and the kinctic energy function 7' can be represented as power
series in o
G=Go+pGy+.... T=Ty+ul+...
After integration, the last two equations in (2.2) can be written as

. _ Gopt a . 3 . . I
(=0Cg— RS:: ) {iga( A1 — A3)W (ko) + isg( Ay — Ag)[kg — W (k)] +411( A2 — A3)[1 — W (ko) }.

=T~ —Nﬂ— ing(A| — Az)W (ko) + 733(A) — Ag)[kd — W(ky)]
H(}il}) - i ?

(A1 — A2)(A1 — A3)(A3 — A3) {?33

S(ka] 4

N ; ;u Az —'5:(k‘)R(kcn) - W(ka)l}.

¢ @ Lo S (34)

Here Wi(kn), R{ko), and S(kn) are the values of the functions (2.2) for & = ko. According to (3.4). the

f!imtlfm% ("(t\ and T(¢) are strictly decreasing, just as in the case of system (2.2),
For small drag torques, it is necessary to construct the approximate solution

f

[ — W (ko) + ‘“ 1-&.)11’{@.)]

1;2 _kf +—u£~&£—u{;ll(gﬁM42 —‘igg}‘g)(} el k%) 1/111’1‘33]'12 =T !gz 4 ) + ‘13(?23 41 ™ %1]_ 42)’\ 1 F:E,I‘DJ }
}11 AzAF: k
We use formula (3.4) for the varation in the angular momentum to analyze the direction of the
veetor G. According to (2.5), the deviation in the vector G from the vertical also remains constant,
just as in the case of small k2, and the rate of varation in the angle X depends on the nonconstant
variable N*, which can be expressed via the angular momentum & and the kinetic energy T Then, for
small drag torques, the law of time variations in the angle A has the form

3wl Nyt cos 5 KRput2gcos 6
:1(7 (] (‘% 3/2 8(:0{1 i ()2.}3;’,2 i

A= g 4
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The variation in the angle A = A(t) has the form of a quadratic function of t whose constant term and
the coefticient of the first power of ¢ can be expressed via the constants wy. Ny, Gp, and cos 4. All these
quantities are positive and are specilied at the initial time moment.

2.5 Itis of interest 1o consider the case of small £2 and small drag coeflicients (3.3). For small k2 we
nbtain the laws of variations in the angular momentum G and the Kinetic energy 7' (3.2), which, with the
terms of the order of g taken into account, give

G=G{l4+m—nt}, T-=Ty{1+q- ¢t}

k2 . y

i = P-{f? 1 +mlmp-4k(ﬁz Az—A1As— A As]+ag, A Aa (4 —Ax)tag, Ay Az( 4, —Az)!}s

k2 _ o ) .
mE= m{alﬂﬂ'i(AQAS —Alflg—_‘hﬂg} -{--‘kzpr’!}_ :’12!\21] —Ag) =} {lrgf_ﬁ‘i]f-i;g (A — A0 |,
g = ———me—|agu (A1 ~ Az) + az,( A1 — Ag) + 1 (A2 + A3 — 244},

(A — As)py
. . i ; ;
¢ = pd 2061y + —————[0ig, (A} — £ gl — Ag Qi Az + A3 — A1) ¢,
- {A?__'AB{ A A3) + azu(AL — Az) + ayu(Az + Az — 24,)]
In . e
P = gy + Qg — 2 oo Qg = _.i._ (.i = 149, 3}. %
1

Just as in all preceding cases, the functions G(t) and T(¢#) are strictly decreasing. To determine the
direction of rotation of the vector G, we have reduced the second equation in system (2.2) to a different
form with (3.5) taken into account. After integration, we obiain

3wpcosd ; nz In(l+¢q) t*
X e 4 ™ - ¢ Lo '\II-
41 — )3 2G(1 +m) (I‘Z Sl { 1+m +'f[ 1+m [’]} 2 e
- .’!12 + ,‘13 + -’1}1]_ 'T:,‘u"i; (l + Q‘)
2 : Ga(1 + m)*~

f=3(A2+ 43)

4. QUALITATIVE PICTURE OF MOTION
Consider the stability of the quasistationary motions obtained in Secs. 2 and 3. We denote the right-
hand side of Eq. (2.3) by ®(k?, x). The derivative of this function with respect to k? for ¥ corresponding
1o the quasistationary motions (2.4) has the form ’

9% 2Bk 1 LEk) 1 [E(®K 1°
k2~ T 1-R K(k) | E)JKk -1 K(k) 1-82 | K& | [
o In Fig. 2. curve 2 presents the graph of the function 8@ /9k* obtained numerically. This graph shows

o Sihat a®/0k* < 0orall k* € [0,1]; i.e., all quasistationary motions in Sec. 2 are asymptotically stable
with respect to the variable k% (in the sense of [15]) for € > 0. This is also coniirmed by the curves in
Fig. 3.

The positive £ are associated with true time t > ¢, and N > 0; ie., I3 Ay > Iy A3 (2.3). However,
these quasistationary motions are unstable in true time for ¥ < 0 and /a3 Ay < 11 As.

In the case of small &2, which corresponds to the motions of a rigid body close to rotations about the
axis A,. the functions ®(k?, x) and the derivative 0®/9k* have the form

. k2 P 4 x
12 £ b’ O
Pk, x) = —__71_3 T Oz 5

Thus, the quasistationary motion with k2 = 0 and £ >0 is asymptotically stable if x > —3 and unstahle
if v < —3. In true time, this motion can be either stable or unstable for £ > ¢, depending on the value ol x
(x > —3or x « —3)and the sign of the parameter V.

On the basis of the preceding, we obtain the following qualitative picture ol motion. First, cousider
the case N > 0. For# > t,, the motion is described by formulas (2.1)~(2.3) and the function (3.1) and
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corresponds to the domain 274, > G? > 2TA,. For# < I, we consider the demain 2TAz > G* 2 2TAs,
which corresponds to the trajectories of the angular momentum vector surrounding “tht:axts Az, It this
domain, we should interchange A, with A3 and 7;; with 734 in formulas (2.1)—(2.3)" Equation (2.3)
preserves its form but with x replaced by ~x and N replaced by =N In a similar way, we can analyze
the motions for N < 0. We choose the constant 7, in formula (2.3) so that the motion at time ¢ = t,
corresponds to the passage through the separatrix.

Let us construct Fig. 7. which illustrates the character of variation in k% depending on x and N
in true time #. The points on the segments comrespond to quasistationary motions. For |y| < 3, we
have two points, k* = 0 and k¥ = 1. For x > 3 and x < —3, we have three points, k? = 0; k%; 1,
The arrows indicate the stability or instability of the gquasistationary motion. The letters 21, z3, and =
denote the body axes corresponding to the indicated values of k2. The left-hand side corresponds to the
domain 274, > G? > 2TA,, and the right-hand side corresponds to the domain 274, > (¢ > 2744,
Six possible combinations of x and N are considered.

We interpret the results as follows. In formula (3.1), we have introduced the notation o (¢ = 1. 2, 3),
These quantities have the meaning of damping coefiicients for rotations about the principal axes ol
mertia Oz, For example, the rotation of the rigid hody about the axis Oz; under the action of the
dissipative torque proportional to the first power of the angular velocity w is deseribed by the relations

d‘.‘;
Vdt
. We introduce the dimensionless variables 3; = ag/ep (¢ = 1, 2. 3) and rewrite relation {2.3) for x
e 3;1{1{1 N as

42 = T w=wexp(—ayt).

y = E_,_d‘__’d_‘ N = .ﬂ__._.!._u_.d_ (4.1)
s — 3 (!g{ﬁg = ,:‘}1)

On the straight line 35 = 73,, the varighle NV changes its sign, and, hy relation (4.1), the straight
fines #3 ~ (14 31)/2and 83 = 23 | 1 comespond to v - £3. We draw these lines in the coordinate
plane (3152) for 3; > 0 and B3 > 0. The quadrant is divided into six domains (Fig. 8) numbered in
accordance with the order numbers in Fig. 7. One can see that the number of quasistationary regimes of
motion and their instability depend on the relative values o, (i -~ 1, 2, 3) of rotation damping about the
principal axes of inertia,

Thus, in the approximation under study, the perturbed motion of the body consists of a fast Fuler—
Poinsot motion about the vector G and a slow evolution of the parameters of this motion. The angular
momentum and the kinetic energy decrease strictly, and their variation depends only on the medium
drag torque. In the first approximation, the motion of the angular momentum veetor G about the vertical
ot the orbit plane is described by the first two equations in system (2.2). The velocity of rotation of
the vector G ahout the vertical varies, and so does the deviation of the vecior from the vertical. In the
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second approximation of the averaging method. the deviation of the vector G from thésvertical remains
constant. and the angular velocity of rotation in this case is variable, see (2.5). The evolution of the
parameters of the Euler—Poinsot motion in the body-fixed coordinate system is described by Eq. (2.3)
and is qualitatively represented in Fig. 7
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