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RELATIVE OSCILLATIONS AND ROTATIONS IN A PLANE
TWO-RIGID-BODY HINGED SYSTEM

L. D. Akulenko and D. D. Leshchenko

Izv. AN SSSR. Mekhanika Tverdogo Tela,
Vol. 26, No. 2, pp. 8-17, 1991

UDC 5313

The problem of the free motions of a hinged two-body system was discussed in [1]. The equations were
integrated completely on the basis of two system integrals, the general solution was obtained in implicit form, and
the motions were investigated qualitatively and numerically. In practical cases, however, the system is acted upon
by various perturbations and controlling forces and moments of forces, consideration of which requires analytic
representation of the general and particular solutions. In this paper, analytic methods of Lyapunov-Poincare
nonlinear mechanics are used to construct approximate explicit solutions of the oscillatory and rotational types and
recurrent procedures are proposed for their improvement. It is established that the motions are generally two-
frequency (quasi-periodic) and conditions of path periodicity are obtained. The model considered here is of
practical interest for solution of problems in the dynamics and control of complex engineered objects, industrial
robots, space vehicles, etc.

1. STATEMENT OF THE PROBLEM

We shall consider free motions (with no external forces or moments of forces) of a plane system of two
rigid bodies (links) in the inertial O,xy plane (see the figure). The O,z, axis is orthogonal to the plane of the figure
and nonmoving in inertial space. The Oz, axis is collinear with the O,z, axis; it is nonmoving in bodies 1 and 2 and
is the axis of the connecting cylindrical hinge, which, like O, z, is assumed to be ideal. We introduce notation: |O,0, |
= [, is the distance between the hinge axes, |O0,C| = /, is the "arm" of the second body about the O,z, axis (the
distance from point O, to the center of mass C of body 2); J, and J, arc the moments of inertia of links 1 and 2 about
axes O,z, and O,z,, respectively; m, is the mass of body 2; the mass m, of the first body is immaterial to the analysis.

The angle variables ¢, and ¢, as indicated on the figure are convenient generalized variables that describe
the motion of the system. Here @, is the rotation angle of segment O,0, (or of the O x, axis) about the O,x axis and
, is the angle that determines the rotation of segment O,C about the continuation of segment O,0,. The kinetic
(and total) energy E of the system is constant in the present case of free motion and can be written as a strictly
positive quadratic form of ¢,", ¢,":

E="[.(Jx+2p cos @:) @, *+*/2daq. T (Jo+pcos ¢2) ¢ ¢

L)
E=e=const (]*=]1+]=+m={|2‘ I-1=m21111(1.'!21*)

The equations of motion can be written in the Newton, Lagrange, Routh, or Hamilton form [2]; for the
equations in the Lagrange form, for example, we obtain the expressions

(Jet2p cos @) g, + (Jotp cos u) @ —pu (@ +2¢2 ) . sin =0
Jag, (o cos @2 )@ g, sin =0
Al 1o, =K, = (1«21t cox q2) @, + (JoH 1 cos 2) . =k=const (12)
aEldg. =K, =].q. +(Jstpcos ) g

(K,"=0. R,/=0dE/[d¢2)
© 1991 by Allerton Press, Inc.
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For p = 0, according to (1.2), the angular momentum K, = k, = const; the result is that ¢, = const, ¢,
= const.

We note that when J. » J, (J,/J. > 0) it follows from the first equation of (1.2) that ¢," = const, while
the second equation describes the oscillations and rotations of a "pendulum-type” system: ¢ —a® sin ¢.=0, where
@=pe,M.=const>0 ,

From (1.2) we evaluate ¢,'=(k—Bg. )4 , where the coefficients - =/, +2p cos ¢.>0,B=J.+ 1 cos .,
=0 arc multipliers before ¢,', ¢,°, respectively. Substituting ¢, into integral (1.1y and remembering that
Ais positive (A=min,, A4>0, where min,..1=/x—2p), we obtain the relation (4J.—B* Jos 2o 2ol k- |
Since miny, (1/.—B%) =/.J.+m.i;}J.">0 it follows from the equation for ¢,"? (by virtue of the reality of &)
that 2eA - k* 2 0. This inequality results in the following equivalent inequalities for all ¢,:

e2' A A2 A ming A, |k|<[2e(Je—2u) ]

System (1.2) is solvable for the second derivatives ¢, ", ¢,”, since the quadratic form (1.1) is strictly positive-
definite; the corresponding determinant A in (12) equals

A=/JoAmul F) 18 sin® @, >0 (J.=)."+m.l0)
Using the first integrals of E (1.1) and K, (1.2), we obtain a relation between ¢, and ¢,";

i S E{D—(i—cosqaz)]
g I L 1-2 cos’ @,
[==J:(J,+m11!1:) l_l_:. DE' 1 +lf(z(1t_lffgkze_l)_ﬂ—‘ (1“3)

M=pl- =3[ L +mal?) |7 (0SD<w, 0<ii<{)

Passing to the limit as u = 0, we find in accordance with the above that ¢," = const.

Equation (1.3) describes the motion of an equivalent system of the "pendulum type" with a variable (2x-
periodic dependence) inertia characteristic J(¢,). The Lagrange function has the form L = E - U, in which the
kinetic energy E="/.J(g:)g.", the potential energy U = 2e(1 - cos ¢,), and J(q:) =/ (1=i*cos’ ¢.) ; for A* =
0 we obtain the ordinary mathematical (or physical) pendulum. The corresponding equation of motion is obtained
by differentiating expression (1.3) with respect to t. Relative oscillations in ¢, take place in the system when 0 <
D < 2 and rotations when D > 2; the value D = 2 corresponds to motion along the separatrix.

To investigate relative motions, it is convenient to introduce the new dimensionless argument 6 into (1.3):

I ,. D—(1-cosqg,) .- des ( 2e ) r (L4
e e o e UL o T e R
2 I—=4%cos® dl !




The phase paths that connect the variables ¢, and @, are analogous to the. pendulum case. The problem
of constructing periodic motions ¢,(7, D, A?) of the second link, i.e.,, solutions of Eq. (1.4), arises. Relation (1.4)
describes the following motions:
symmetric oscillations [3], which occur when0 < D < 2:
: o
8—0, = ___L S== [;1 D008 ) ]Ih
o 9 (e D) 1—2% cos® 2
= (. D. &) =q(p+2a, D, &), |o:}<q:*(D)

(9, D, 1) ===, D, 1), y=aw:(D, ¥) (6—0.)+¢* (15)

.

. dg 1—A*cos'q 1"
6.(D. A Y=Y —=12" [-—-——] d
¢€P: I D—(l—cos @) ?

©:=27/0:. g*(D)=arccos(1—D)=2 aresin(*/.D)*

-5yt

monotonic rotations [4,5] (Poincare-periodic solutions of the second form [4]) when D > 2 (for the sake
of argument, in the positive direction):

@:=q: (¢. D, &%) =% (¢, D. A%), |@:* | <@.

¢:(¢+2nz. D, M) =¢.(¢, D, A°)+2nx, =0, =1, &2 0 e
g:*(nx, D. 22)=0. @ (¢, D, 2*)=—0.(—¥. D, 4%)
bt | (1‘6)
PO DT R L ol |
& Q- (qJ.D.}n.') 1_;‘1- COS 2

t=0:(8-08,)+1"; 0:=27/6,—0, D—2

Substitution of ®: (. ——@.') for w, results in rotations in the negative direction (¥'<0. @2 <0);
w, and 6, are known as the frequency and period of the rotations, respectively. i Y

We note that the present system on integral manifold (1.2) pertains at small D < 2 to the case that
generalizes the Lyapunov system [3] and when D > 2 to rotating systems, which were investigated by asymptotic
methods with A? = 0 in [5-8]. Rotational solutions were constructed in [9] with D>maxe,| U|,A*=0for an arbitrary
periodic potential U(q.)=U(¢:+2x).

The problem of analytic construction of oscillatory and rotational relative motions of the second link on
the basis of expression (1.4) poses itself first. It is then necessary to use the integrals (1.2) to construct the motions
of the second link and, finally, to find the motion of an arbitrary point of the system, for example, the end of the
“écond link, on the plane O,xy of the Cartesian variables.

2. CONSTRUCTION OF RELATIVE OSCILLATORY MOTIONS OF THE SECOND LINK

Let us give more detailed consideration to relations (1.5), which define closed phase paths on the (¢, ¢,")
plane, vibrational motions @:(¢. D. 23), 9.’ (%, D, \*)=0,0¢:/0¢ ,and their amplitudes ¢,*(D), periods 8,(D,
A2), and frequencies w,(D, \). To express 8, we obtain after the standard substitution D=2x> sin (./2)=
wsinv, |y|<n/2 ,where x = sin (¢,%/2)

i
1—A*cos’q 1"

0.=86,"(g.". A*)=2 [ 1 dg=

e ;‘ W —sint(@/2) 4

al2 - (2-1)
=4 S [1—A*(1—2x" sin’ 7)’]"'(1—x’sin"f)""d1=2 0" (A}) "=

L]

n="




= Yot (yam = Z)je @y

m=C n=0 m=0

For n = 0 we obtain an expression 8, (%°) for the period of small oscillations of the second link; with
increasing A’ ie., p (see (1.3)), the period decreases; this also follows from (2.1). The subsequent coefficients
©.'"'(3*), n=1 are obtained in the form of elementary expressions by expanding the second representation of
(2.1) for ©, in powers of ()" and integration of sin*y [10]; for example, we have forn = 0, 1,2

0. (A) =2 (1—22) %, 8, (A?) ="/t (1+342) (1=23) %
0. (A?) = (3n/32) (3—1442=3R*) (1—4) "

We note that the known expression for the pendulum is obtained in the limit as \* = 0: 6% (¢.*. 0)=
4 (%). 0==<1 , where Kis a complete elliptic integral of the first kind, for which we have the expansion
Q%@ * 0)=2a+" a4 9/32)% +. . (see [10,11]).

For A = 0, x ~ 1, the oscillatory motions of the second link are described by Jacobi elliptic functions
[1,12]:

@2, %% 0)=2aresin(x zn{¢.. »)), 0=z<l

Cr=wa (%) (0—0) ¢, 0= (%) =21/0:*(¢*, 0)=x/(2K (%))

On the basis of this generating solution we can construct the sought periodic solution ¢,(, &, \’) by
perturbation methods (powers of the small parameter A* > 0). With the substitutions indicated above, we obtain
the relations

/ (1—x*sin*y)™ B (1—x*sin®y)*
1 [1—=A*(1—2%%sin*¥)?]" A+AT (A%, «*sin’* )

g.=2arcein(xsiny) (Yo=am(y.. z), 1*=0)

We convert and integrate the resulting equation and reduce it to an implicit relation for determination of

; y=am{V¥, »), ¥=¢-L°TI(y, »* L?)
PN =) 0. +o:—0., 0.=27/8.%(¢.*. 1%)
Yy =MW i1y 2)y Wi, =4 AT (7). %% A7) 22
& Ton=am{—A (Y0, %5, 0). %}, vy=am(i =) i=1 2, ...

Subsequent approximations (2.2) converge absolutely uniformly as i— o to the sought function v.(y, £,
A), and @a—Gaa (1. 2%, 2°)=2arcsin(x sn(¥u, %)), Y~ Va..

To construct the oscillations of the second link about the equilibrium position ¢, = ¢,” = 0, we apply a
procedure similar to the approach developed by A. M. Lyapunov to the systems that bear his name [3]. The
corresponding equation and initial conditions have the form

(1—h*cos® @.) @2+ iA g sin 2. +sin ¢, =0
: (2.3)

[pa| <qa* (6)==2 arcsin.&/2%)

@: (0) =q,*(8), ¢.'(0)=0, 6=D"<2"

Putting ¢, = 8¢ in (2.3), where £ is a new unknown variable, and introducing the perturbed time 7, we
obtain the quasi-linear equation '



i

L RS ) ( gY sin 28%

R ;‘1'5 L et B, e e e e

dt 3 dt 1—4 cos® 6E
=0/ (R (1=2%)"), h=h(6°, 1*)=h,+8"h+.. +6"h,+. ..

h=0,/ (2x (1=4%)"), E=F (1. 6% 25)=E(7+2m, 6% A%)

E(0, 8% AY) =q.*/6=(2/6)arcsin (8/2%), £'(0, &, 2*)=0
O F (&, 6%, A7) =6""[85 (1—A7)"'—=sin 88 (1 —A% cos® 6E) ']
B, 8 A =%(1, ) HEE (1, W)+ H8 5. (1, 0) +. ..

€|

T8 F (5, 6% %)

Here the parameter h is so chosen that the variables £, ¢’ will be 2x-periodic with respect to 7. The

coefficients b, i = 1,2, ..., and h can be determined either during construction of the solution or according to (2.4),
where 6, is determined by relation (2.1), in which # = /2. Substitution of the expansions for the unknown b, £

in powers of ()" into (2.4) and equating the coefficients with consideration of the 2x-periodicity conditions, we
obtain the expressions sought for k. (A°). £.(t. A7) :

ho=1, hy=(1/8) (1+343)/(1=2?), ha=(3/2306) (3—14A*—30*) [ (1—2%), ...
£, =2%cos 1. §,=(2/96) [3(3+A)cos T— (141127 cos 3] H(1-1%)
t,=(2"/46080) [ (1875—33902>+852751") cos T+ @25)
+ (— 1804216022+ 23404 cos 31+ (9+7021°+
+14494% Yeos St]/(1—4%)3, ...
T=(271/8.) (6—8,) = (8—0,) /(A (1—2*)")
It follows from (2.4) and (2.5) that £, (0, A*) +6%,(0, A*)+...=q.*(8)5~' . We note that the series (2.4)

and (2.5) will converge uniformly if D = 4’ < ¢ < 2. Thus, a periodic solution that depends on the three arbitrary
parameters ¢, k, 8, can be constructed with any predetermined degree of accuracy in the parameter D.

3. CONSTRUCTION OF ROTATIONAL MOTIONS OF THE SECOND LINK

As in Sec. 2, we devote a more detailed analysis to expression (1.6), which defines 2x-periodic phase paths
#,' (¢,) on the phase plane (¢,, $,"), monotonic rotational motions ¢,(¥, D, \?) for which the velocity @ (. D,
A}) =w,09-/0p=v>0 is strictly positive, the velocity extremes, the period ©,(D, X?), and the frequency w, =
27/8,. To express 6, we have

5! 3 k3
©,=6.(D,1*) = (2D)" | [M—cfwf@] i

/2 - ™
4 ( 1—A% cos® 2y )"‘ 4 " 4 =
o i Bl e =t L 8“’ A = — A™) o2y g em 3.1
1—x*sin’y L2 g 9% x"_zo' o ihdA S
4 n,m
————EZGL' e, x’=§—<1
b 4

ol M=

In the limit as A\ = 0 we obtain for ©, the expression 6.(D, 0) = (4/=)K(x) (see [12]), which
corresponds to the rotations of the second link on uniform rotation of the first body (see the remarks following Eqs.
(1.2)). We note that expansion in «* or N result in complete elliptic integrals of the first and second kinds, while the
double series (3.1) in «* and A\’ results in elementary integrals of sin** 1 cos* 2y [10]. As a result we obtain the
following approximate expression for the period of “fast rotations" (at small D", X% A* ~ D™'):

10




Q.(D, B3)=a(2D)"h (D', 33), D=2x""*

h= 14/ (D='="/32 )+ (1/16) (D=3 —2D="%}— (3/4)1") + 5
i + (1/64) (60D=—TTD=AT+30D" — (23/2)A%) +0 (D~ +1?)

Let us consider positive-direction rotational motions that correspond to this case. We introduce the "fast”
dimensionless time ¢ and modify expressions (1.4), (1.6):

dt/de.=h(D~'. 1) +g(¢z. D' 1}), ¥=(2D)"0

T(q.. D' 2*)=h+g=[(1—A%cos* ¢.)/(1=D~" (1—cos ¢.)) ]"
vie : (33)
h=Dpm | (0.0 Ady  (h(0.0)=1)

g=T—(Tde=T—h. (gde=0, g=0(D-'+47)

Equation (3.3) is integrated by quadrature. Using the properties of the function g (smallness with respect
to D, X* for all ¢,, 2x-periodicity and a zero mean value with respect to ¢,), we run a procedure of the method of
perturbations. We shall seek a rotational solution ¢,(¥, D*, \?) of the form (1.4) by expansions (or successive
approximations) in powers of the small parameters D™; A* (¢,° = 0):

qJ:=!IJ+G(CP;. D_‘, ?"z)s ¢=&rih=ﬁlg(9—eg)+¢=
*

¥ 1
Glon D\ N) = —[ g(0. D7) dg,  G=0(D-"+)

¢=v+G (1, D7, &%) [1+g(p, D, A*)] +0(D-*+2%)
g(g, D, At)=—"/,D~" cos p— (1/4) A’ cos 2¢+
+(3/4) D~ (A*/4—D~*)cos ¢+ (1/168) (D—*+A%) (3D~'+2%)cos 2¢+
+(1/16) D-'2% cos3— (A*/64) cos 4p-+0 (D~+1*)
h(D-', 1) G (¢, D', A*)=—"/.D~" sin p—(1?/8)sin 2+
& +(3/4) D (\*/4—D~")sing+ (1/32) (D-'+1?) (3D~ +17)sin 24+
+ (1/48) D—'A* sin 3+ (A*/256) sin 4¢+0 (D~ +2%)

(3.4

Thus, formulas (3.1)-(3.4) give us an approximate solution of the problem of "fast rotations" of the second
link when the motion of the first (carrier) body is nearly uniform rotation (large moment of inertia J,).

In the limit as A = 0, the case \* < 1, D = 2«* > 2 (D ~ 2) results in rotations of the pendulum, the
motions of which is described by elliptic functions [11,12]:

g sin ffe

x 1
@2 (o, D _.0)=2am(¢.,.x)=1t‘a+4§ -}-_1+q:, 35)

Yo=w-(D~". 0) (8—=0,) +1t°, ©:(D". 0) =41x""K(x)
g=q(»)=cxp[—aK' (x)/K(») <1, K (#)=K(x'). »'=(1-%)"%<I

e
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where am is the elliptic amplitude, K is a complete elliptic integral of the first kind, and « is the modulus. At small
N2, the autorotational motion (1.6) described by Eq. (1.3) is obtained with the aid of the Lyapunov-Poincare
methods [3] or by construction following the procedure of [12]. We have

dp/dg,=1+g (@, D7) +A0u(@a D' 1F) -
3.6
¢=0/h, g (g.. D~')=g(¢., D7, 0)/h(D~". 0) @4
228:(qs, D' 37) =g (qa. D', 2°)/R(D~ 2*) —ga (g, D7)
The functions g, gy, &) are 2x-periodic and have zero mean values with respect to é,. Integrating (3.6), we
obtain a finite relation that determines ¢, implicitly (see (3.5)):

C=¢:+Gu(q:. D7) +270u (g, D7, 1)

(F:m(‘l'- D"}z?.am(\;, 7.), (F?“‘(q"! D-. ‘;":)=__
=2am(¥'", z), ¥"'=¢—AM(e.", D" 0)

(€X)

el (. DA =2am (WU, %), WEHI=g—1A (¢ D1 22)

Here am is the elliptic amplitude corresponding to the integral of the first kind F(x, ¢,) [11]. Successive
approximations ¢,% of (3.7) converge uniformly as i - o to the sought rotational solution of Eq. (3.6) ¢, (y, D",
M?) in the form (1.6) if A’ is small (\* < c < 1). The "rapid rotation" case is handled similarly, i.e., the expansion
is constructed in powers of the parameter D" (or %) for A* ~ 1 (A’ < 1). The corresponding generating equation
is determined similarly from (3.6) and (3.3):

d/des=1+go(qs, A7) +D60(qs. D, 12
t=0/h. go(a, 1) =g(@:, 0, 21)/R(0, 1) =
=(1—2%cos® @z) /R (0, A?)—1, R(0, 3°)=(2/7)E(%)
D85 (s, D™, A*)=g(@s, D', A*)/R(D~*, 2*) —gn(@s, 1Y)

(38)

It follows from (3.8) that the relation between the phase y and the variable ¢,T = ¢, + 7/2is given by an
elliptic integral of the second kind: ¥ = E(), ¢, %), which we invert to write ,=Fn/2+am,(¥. 1) . Integrating
(3.8), we obtain an implicit equation for ¢, and its solution by successive approximations according to (3.8):

$=0:+Gp(@2, A2} +D~'Ap(@s. D', 4%)
@' (¢, A*)=Fn/2+am. (. &)
gV (¢, D', A =Fn/2+am, (W, 1), ¥ '=9p+D""n(g."". 0, 2%) .(3 9)
q):wu (\D,D", }.:)‘_xﬂjz-i-am:(lp(iﬁiﬂ’ 3 q,rt-'+n=‘p_D-.iAn (¢>;t} D129,
i=1,2,...

The successive approximations ¢, (3.9) converge uniformly as i — o to the sought rotational solution of
Eq. (38) (¢,)(¢, D", \?) in the form (L6), if D" is small (D" < ¢ < 2). The case of small D" < 1 (*fast rotations”
of the second link) but large A?> ~ 1 (A’ < 1) is not mechanically instructive. We note further that extremes of the
angular velocity ¢, (¢,) occur at ¢, = 0, 7 (maximum and minimum, respectively, for positive rotation), as can be
seen on direct differentiation of expression (1.3). Thus, a general approximate analytic solution ¢,(¥, D?, A% of (1.3)
(or (1.4)) in the form of oscillations and rotations of the second link has been constructed (see (34), 3.7), (3.9)).
This solution depends on the two motion integrals ¢ and k and on the phase constant (-w8° + ¥°) as well as on

the system parameters (see Sec. 1). It can be used as a basis for construction of a general solution for the variable
@,, which determines the motion of the first, carrier, body according to (1.2).

12



4. DETERMINING THE MOTION OF THE FIRST (CARRIER) BODY

The motion of the first link with respect to the nonrotating O,xy system is given by the angular variable ¢,.
We use the motion integrals (1.1) and (1.2) to determine it. Let us first consider the general case p ~ J,, J. (0 <
u, J, < 1.); we have the expression

L

i r'lf_ (J:ﬂi" Cos ) 3‘
0=, (¢2)=(p‘o+ S - [ ¢ ‘p' (9)
o (JxT2pcos @)g: (@)

(4.1

in which ¢," is determined according to (1.3) and the ¢,,° are certain fixed values of the variables ¢, , that
correspond to one another (for example, the initial values). Relation (4.1) states the relation between these
variables, but it is inconvenient for analysis because the integral contains an essential singularity: ¢,"(+¢,*) = 0,
and the variable ¢, is nonmonotonic for oscillatory motions, see Sec. 2. It is more convenient to convert to the time
variable t or to the phase ¥, of the second link:

k—[J+p cos g2 (¢2) 12" () Tosmon
Jx+2p cos @2 () L3
¢1=m={9—-90)+¢z°=93(!—1n) +‘;'-‘ni Q'—'=&)2 (D! Z':) (26![}" 2l

@ ($) =

Separating the mean part and the variable part with zero mean value, we bring the angular velocity ¢, " (¥,)
to a form convenient for integration:

9 =Q/(e, k, P)+A,(\:. e, k P). <A)¢=0
Q=1 (P, $:) =¢,"+ 0+ @ (2, €. k, P)

1 s §
Q u_gj‘ o (%, e k. PY g, =R (1—t)
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®1=I A;(¢:’, €, k,P)dt', '¢'1=Q={£_tn}+¢zo
by

Here P is the set of values of the system parameters and A,, $, are 2x-periodic functions of the phase .
Thus, the motion is one-frequency if @, = 0: ¢,, = @, ,(¥,), with the variable ¢, oscillating, while ¢, may
be either oscillating or rotating, In this case, the paths (¢,(1,), ¢,(¥,)) are closed. In the inertial O,xy space, points
< of the first carrier body, for example those lying on the O,0, axis, describe oscillatory motions along an arc of radius
“L, whose paths are closed for @, pa;— @y min=271 (z=L,cos G, y=L,sin q,) . Points of the carried second link
described relative oscillations or rotations with the same period, and this results in closed paths. For poits on the
O,C axis, for example, we obtain z=L, cos(¢+¢:) T/, cos @y=L. sin(@,+@:)+l sin @,
Further, if @, > 0, the paths are generally nonperiodic (nonclosed), and the motion is two-frequency. Quasi-
periodic motions occur for Q,/Q, irrational. The closed-path condition and the expression for the corresponding
period Ty have the form !

QJQ::PJ!‘I, T2=PT1=QT:‘ Tl.:'_"‘z-'l}’Q:.:

42
qQ.(e, k, PY=pQ.(e. k. P) e
—Herep;q = 1, £2, ... are mutually prime integers. Here it is necessary to consider the limits on the set
of values of ¢, k, and P, for example e=>'[,k*(Jx—2u) " , see Sec. 1.
Let us now consider the case of small values of the parameter p (u < J,), which characterizes the
interaction of the links. In the limit at = 0 we have the expressions )

13




g =0Q.%(e. k. P)==xf(e, k. P)=q¢, "=conzl
¢ =2, (e. k. P)=(kF[]:)]u"" =g, =const
f=f(e. k. P)=(2ela—k*)"[J:(Jx—1:)] "

Hence follows that cach of the variables @,, ¢, may be either constant (if ¢ =0, @: “=0), or rotating (if
¢, °#0, ¢ °#0). The condition (4.2) for periodicity (closing) of the paths reduces to relationships in terms of the
integrals e, k and the angular velocities ¢,,"°, respectively:

k==%(J,+1eplq) {(e, k, P), k*<2els, ¢,°¢.°=plg
k(2e]x)=[1+p(1—p) (p+p/g) 7] =", 0<p=/Ja/]u<1

In the first approximation in u for 8, # 0, we obtain expressions for ¢,", ¢,’ and the closed-path
condition:

¢ =Q, V' +n(N*/AJ) (cos p."—cos ¢2'V)/Q,
@ =0 —p (N/AT+Q,* /1) (cos @ — cos @: ) /Q:%

o, b N )_ [ () (‘ N? Qin_];)
oo targu oo )=~ \Gow T rgw ) © ‘P=°]

N=20" +Q!"Q" +Q"*  AJ=J4=1.>0

Je=I 1+ 4+m,l 32 J.=1,"+m.l* p=m.ll

Thus, general periodic and quasi-periodic oscillatory and rotational motions of the unperturbed
conservative system described in Sec. 1 were constructed in Secs. 2-4. They are of applied interest for investigation
of the motions of a plane two-link under the actin of perturbing and control inputs (for example, in the hinges O,,
0, and from the external environment). These motions are Lyapunov unstable in cither direction, i.c., at t=0. The
above analyses can be extended directly to a free system of coupled rigid bodies [1]. :
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