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EVOLUTION OF ROTATION OF A NEARLY DYNAMICALLY
SPHERICAL TRIAXIAL SATELLITE UNDER THE
ACTION OF GRAVITATIONAL AND LIGHT TORQUES

1. D. Akulenko. D. D Leshchenko, 8. (i Suksov, and 1. A Timoshenko

(Received 19 January 2004)

We study the evolution of rotation of a rigid body (a Sun satellite moving in en elliptic orbit with
arbilrary eccentricity) subjected to moments of gravitational forces and light pressure. The body 15 assumed
to be nearly dvnamically spherical, and its surface is assumed o be a surface of revolution, which allows -
one 10 approxamate the light pressure torque coeflicient by a finite trigonometric polynomial. In the first -
approximation of the averaging method, we obtain new qualitative effects of satellite rotation relative to its
center of mass.

1. PRIMARY ASSUMPTIONS AND STATEMENT OF THE PROBLEM

We consider the motion of a satellite or a spacecraft relative to the center of mass under the joint action of
the moments of light pressure forces and gravitational attraction forces. The rotational motions are studied 1 the
framework of models describing the dynamics of ngid bodies whose centers of mass move in elliptic orbits around the
Sun. The dvnamic problems are generalized and complicated by taking mnto account various perturhing factors and
remain topical nowadays. Rotational motions of bodies relative to the center of mass under the action of pertarbig
torques ol various nature (gravitational, light pressure, efc.) were studied in a close MAanner m DUIMEIous Papers
(see | 1-10] and the references therein).

We introduce three right Cartesian frames with origin at the center of inertia of the satelitte [1.2] The frame O X Y7
maoves progressively in the Sun orbit together with the satellite; the Y -axis is parallel to the normal to the orbit plane,
the Z-axis 1s parallel to the direction of the position vector of the orbit at the perihelion. and the X -axis is the direction
of the velocity vector of the center of mass at the perthehon

The position of the angular momentum vector L in the frame ¢ XYZ 15 determined by the angles p and =, as
was shown in [1-3]. (Here L is the angular momentum of the body relative to 1ts center of mass.) To construct the
frame OL, L1 fixed to the vector L. in the OYL-plane we draw the L, -axis perpendicularly to the vector L and
forming an obtuse angle with the Y-axis. The L.-axis complements the L,- and L-axes to a right frame. We lat
the axes of the body-fixed frame Ouryz coincide with the central principal axes of nerta. The murtual position of
the central principal axes of inertia and the L-. L, L-axes 15 determuned by the Fuler angles [1-3] The direction
costnes {0, ) of the axes Ox. Oy, Oz with respect 10 the frame O, L. L are expressed via the Euler angles 7. 7. ¢ by
well-known formulas { 1],

We neglect the moments of all forces except for the gravitational forces and the light pressure forces. Inji} a
comparative estimate of gravitational and light pressure torques 1s given for & Sun satellite. In general situation, 1t was
shown that the light pressure torque is several orders of magnitude greater than the gravitational torque. In the problem
considered below. the light pressure torque is assumed to be of the same order of magnitude ¢ as the gravitational
torque For example, this can be achieved by an appropriate mass distribution and an appropriate shape of the body

The gravitational torque acting on the satellite from the Sun side has the form [ 1, 3]

M, = %} ((C— By~ (A=Ory" (B-An'y). R=IR| (1)
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Here g 1s the gravitational parameter of the Sun; ~, 7. and 7" are the cosines of the angles between the position
vector R and the -, y-. and z-axes.

We assume that the surface of the spacecraft is a surface of revolution and the unit veetor k of the symmetry axis
is directed along the axis Oz. As was shown in | 1.4, 5] the light pressure torque M. acting on the satellite in this case
1s given by the formula

M, =« (=) .:erxk
- 5 B B r R {1.2)
TI: =p, S(s )20 p.= __!_11; (—R-i)

Here e, is the unit veetor directed along the position vector of the orbit; £ 1s the angle between the directions e,
and k. 50 llul le, x K} = sin=_; R is the current distance from the Sun centcr lo the satellite center of mass: K, 15 a
fixed value of R, say, at the mltla] time: a_(=,) is the light pressure torque coefficient determined by the properties of
the surface: S 1s the area of the “shadow” on the plane normal to the Bow: Z{ 1s the distance from the center of mass
to the center of pressure; p,. is the value of light pressure af the distance R from the Sun center: ¢ is the light velocity.
and £, is the value of the Light pressure energy flux at the distance R, from the Sun center. If R, 1s the radius of Earth
orbit, then p_, = 4.64 - 10 °Pa,

In what follows, we assume [1] that the function a_ has the form a_ = a_(cos ¢) and approximate this function
bv polynomuals in powers of cos <. The light pressure lﬂrque has a Imu, function depending only on the position of
the svmmetry axis m space | 1]. W& represent the function a (cose ) as 9]

a.f&,)

=0, Tay 088, tay cos™ e, L ’ (I3

&

a

1f the force function exists, then the equations of perturbed motion of the satellite in the variables L. PO IR
have the form | 3]

: all . al! ;o s
= i .1 ¢ v . 1 e = Wil — o
& =(Lsinp) -—-—ap .p (Lsinp) 5 cot pL e o

; : ; 1y Lot N ()(
§ = Lsin# sin & cos WA =B ) =(Lsin #) ' —— +cotfL o
2 - - (L4
: " 1 a . = 1 d !

= Loost ' — A tsin® o — B Teost o) +(Lsind) &
. . R 1l atr
=LA sin g+ B teos gy~ L7 ({h; cotp+ — 50 colH)

The force function {7 depends on time f via the true anomaly (¢} and on the direction cosines of the axis Uz
the frame QOXYZ, it has the form [/ = {7 (2(F). &v5, 55, 73).
{me should supplement Eqgs. (1.4) with the equation deseribing the varation of the true am)mal) n time,

iy 9377 W2
& wy(l—e) " (l+ecosp),
{
. R i1.3)
2 s ~gty }]“
@=F= =)

Here w, is the average angular velocity of motion of the center of mass in an elliptic orbit: 1}, 15 the orbital period
of the satellite: ¢ and I are, respectively, the eccentrieity and the Focal parameter of the orbit. and # 1s the product of
the universal grantdtl{ma] constant by the Sun mass.

We assume that the force function consists of two terms due to the gravitational torque and the light pressure
torque, {7 =17 gt t7_. The force function due to the gravitational moment can be writlen as

; 3u R 3
L= A=By+(A-Cr""1.
¢ 2R3 I« ) ( ] (163

’ " " E
A =ansine Fhy,cosp. T = ogsiny + Yy co8 0

The light pressure torque ( 1.2) corresponds to the foree function

= 7
Ufcosz )= —-';?‘_f /u,_(mse,Jd(cos:: 21
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We first consider the case of the “trigonometric monomzal™
a(cos:,) =a,co8" &, (1.7

The force tunction in this case has the form

£, Mg ndi

——— e AN E

(n+ 133 CFL (1.8)

COSE, =Ny 008 ¥+ oy Sy

The direction cosines a; and 7, are expressed via p. 7. # and +* by well-known formulas [1]. We assume that the
angular velocity of the satellite motion relative 1o the center of mass is significantly larger than the angular veloaty <,
of orbital motion; 1., we assume that = =wpiw ~ Awy /G £ L.

We assume that the central principal moments of mertia of the satellite are close to one another and can be
represented as

A=1,+cA,, B=1,+:B,. C=J,+=C. (1.9)

torques have the same order of magnitude & as the gravitational as well as gyroscopic torques. [t follows from (1.7)
that [7_ ~ +. Moreover, for the force function of the gyroscopic torque one has [, ~ =1 ie A - C =14, ~C):
and 4 - B ={4, - B)=

We study the solution of system (1.41, (1.5} for small = on a large time mterval £ % ¢ I The efror m the averaged
solution for slow variables is O{) on the time interval w which the bodv makes £ ' rotations. The independent
averaging over ¢’ and v is performed just as the nonresonance cases {2].

where 0 < & < 1 is a small parameter. We also assume that @, ~ =, @) ~ £, ... ay ~ £ 18, the hight pressure

3. TRANSFORMATION OF THE EXPRESSION FOR THE FORCE FUNCTION, THE AVERAGING
PROCEDURE, AND THE CONSTRUCTION OF THE FIRST APPROXIMATION SYSTEM

Consider the unperturbed motion (= = U) for the case in which Egs. (1.4), (1.5} describe the motion of a spherically
symmetric body and the gravitational torques (1. 1), as well as the light and gyroscopic torques (1.2). are zero. I
follows from system (1.4) that p, 0. L, 4, and © are constant and

i = ——J-—f i, Wo = const (2.

which corresponds to the uniform rotation of the satellite about the vector of the angular momentum L which moves
progressively. For small & # 0, system (1.4). (1.5) of seven equations with (1.9) taken into account contains the slow
variables p. @, L_f. » and the fast variables > and #. To obtain the solution in the first approximation. it suffices to
average the nght-hand sides ot Egs. (1.4 by substituting 1/ from the sotution of (1.5) and v from the solution of (2. 1)
into these equations. We assume that no resonance relations of the form myw, +n L, ! 2 0, where yn, and n, are
arbitrary integers, hold for the frequencies w, and L.J, S

Then the time averaging of the force functions can be replaced by the following independent averaging over the

T P g 5N % 27
: . (l=et)re
i ;,".'J,-,‘) i 1 21 2.2
Ju J (1l +ecospl-

e variables v and (1)

_ 1 o pda . Dap plw e it 2
= Udipdi=—2 f ( [t T it /
27y Ju 0 ‘:‘-Tﬂ" A K S J d (2m= Jy

Here we have used the fact that

at (Jee2y e 27
P M S S e WL, Tpeir,
A (1 +ecosp)iw, ! T i

10 (2.2). {7 15 the averaged function. Thus the time averaging of functions depending on r 1s reduced to averagmg
over i as follows:

2 (PR fuyde

e 1 o _ ks Ju)
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{1 +ecosi)”
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Next. using the expressions for the direction cosines a., V. @, and 7; via the angles p, . . v, we obtain the

value of the force function I averaged over i+

" 3w

Wy = W(l +ccosv) {_(A -9 [(3 cos— 8 — 1 sin’ Pl +eoos2{y—on+12 sin” 9]

+(A - B){l(l —sin® # cos” 2) + sin? 23 sin° f cos” o — 1)1 +cos 21 — -'rnJ Fo(24)
After averaging over v, using (2.3), we obtain

% 1..;’.,1 - 5 & ] . "y 1 F, a . JIPS A o
[ = R i—{i—“ {t;’l---t,f)[z sin” 6+ 3 cos” B--11sin” pi+ A-B) [l?.t_ 1-sin” & cos® (3 sin- 9@0;-. —1ysin” p (2.3
= L _ |

Caleulatng the partial derivatives of the averaged function t':'g., we obtain

all, ol
& = =1
t';'l-f' t}ff i
Al 3u . - &
~-)—i = 70 sinfcosl2 ~3sin’ n' ~(A- Bieos" o+ (A-C).
;}9 4{ 2= }1 2 ﬁ]
ol B P . B
Gt 240 in peos pl(A — BY=1+3sin" fcos™ @) +(A- CH=-1+3cos" )
O 4(1 —e-)y/- - b
Al 37
g = 0 SIN £ COS sin® (A~ BU2- 3sin’ p.

By 41—
We average the funection [/, in a similar way. In the notation introduced in [9], we have

cos™ o =(d+geosp)"

i

i P TRy s < - 142
d=gosfsinpeos{g~v), pP=y-1. = {sin" Alsin~ (7~ 1) sin” p+eos” pl )

i . Lz a (2.7
cos = sm# sm(r — u'){sin“ Asin~(7 — ) sIn” p+cos™ pf ‘r W%
sin y = sin #cos p cos(a — i) sin® B[sin’ (o — ) sin® p +cos™ N “H2
By applying the binomial formula, we rewrite the right-hand side of 2.7y as
n+l
(d+goos)" ! = X 50 cos® p(ghd™ 1y, (2.8)

£l

Next. using the expression of the direction cosines ay. 73 of the axis ()2 m the frame XY/ m terms
of p. ., ¥~ [1]. we obtain the average over ¢ of the force function [/

B9

- a, K . 2m -1 i
@y, sl R gt Lm 2.9)
i {n+ D= Z : Tamt :

m=

Here E(z)is the integral part of a number 2. In the derivation of (2.9), we have taken into account the fact that

1 an 1 ﬂ-‘-—-\ g
e [ {d+qgeospy™ rh—'=LCﬁ—lF!k““'”kv
P 1Y o=t

PP (2m- D!
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We now average over v. We denote u = o — . then d = h.cosu, where h = cos#sin p. The expression for g
in (2.9) can be written as

g™ = {s” f]sm (o — 1) sin” p+eost pl " =(b+g sin® )™,

h=sin*fcos™p, = sin” #sm” p.
Again applying the binomial formula, we obtain

(b+gsin® w” = P Frsn .
k=i

Thus. as a result of the change, the second averaging of the force function u = o — v will be performed over . To
this end, one has to consider the integral

I ret in
-7]—? ] (h+gsin® u)?(heosw) "™ du = Z gt h""j“)z% / sin® ulh cos W)™ ddu
= R k=it il
G 1 im .
=3 o ol i T f sin* ucosu)™ ™ dhae.
k=01 = o
"|'he integral can be calewlated in closed form [9. 1] s;:

n=2{
n=MU+1.1e”

A :

S 0.
b f ™ wcos )™ du = 4 (2k= D20+ 1 =m)= 1]1
G [2(k +1+1-m]!!

Then. after averaging (2.9) over u, we obtam

=1 m
'i"-:i—] =i 0_! E Z A!-m_k-l-‘:ﬂg ()):{1— Lol S-lll::m H(Si{] p.]j,c,i-l m'"'l"'{t‘ﬂ:’s PFA!“ L:'\_
rreed) =i}
”‘:MR::;“ — eyl (2.5
20+ 1P ’
Lo gem ok @M= DUQE- DU m) - 1]
Sk W1 e {27??)”'2”{"":’"’ 1 —'ﬂ?-)]!' .

The force function for the light pressure torque cocfficient of the form (1.3) can be written as

P N1
!-"r:(i‘y',p)ZZ(.-'QH[H_;)')_ QZE(—IE ) (2.1

f=11

Caleulating the partial derivatives of the function (2,11} with (2.10) taken mto account. we oblain

ol r"?l'v"r. al’ 0

[¥lag e dy :

N" ¢ =t om
e =7 ZZZ 5, A, (cos H M isin 9Y7 (sin L R cog TRl 4 Yy cost gt k- m

3 * 1k ; : Sy (cos g) fti +cos p mj.

SH 1= 1m0 k=0 (2:12)
(-”-‘_v @ 1 m

- : L y P

e g ey 5 - 21—k o 2mek) N _Im+ly | H-2mly -1

v 2 z Z i &, A (510 ) (cos o) (sin p) {cos &) {sim#}

{=t =0 k=0
X [m — (1 + 1) sin” ],

The coefficients §, and A, are defined m (2.10). Wi note that the coefficients ¢, n the expansion (1.3)

i

hsappear under averaging.
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Thus, the averaged system of the first approximation becomes
al’
. A T . _i_
p=0. [.=0. &=(L,sinpy) 5"
B . o -1 B—'I +(f =1 3.&'3 4 3 o B 4\!-28" "
1 = L,sinflsm o cos A~ — YLy TG e (1— = s P (8- A)sin” ¥ 310 o €08,
&= Locos@C ' - A fsin® o — B cost @)
G M+ om ‘ . ) ) . {: 111
=24 L[. Slnﬂ)- ! z Z Z 5{1-1[_’7?&(51[1 pU}IU-H—\m-‘-k}tcos pn‘ri n'\—ﬂ:_}(cos g +1 (sin 6)-)21"1 1 [m _ (; +1)sin” 9‘1
I=0 m=0 k=0
3u ; 3.0 P .\ 2.1
ET e L; (] e p;-,) cos O[(A ~ () + (B~ A)cos™ ¢},
5 = oy Hﬁ{i —e7] i
; 20+0P7 7
tus study system (2.13). The angular momentum veclor

h respect to the normal to the orbit plane. Consider the

where L, and p;, are the values of L and p at the initial tune. Le
le « (2.13). They describe the motion of the angular

remains constant in absolute value and constantly inclined wit

cquations for the nutation angle 8 and the proper rotation ang
momentum veetor L with respeet to the body-fixed frame.

3. EVOLUTION OF THE NUTATION ANGLE AND THE PROPER ROTATION ANGLE

5 A=C ;

Note that -
I; -A~ j“‘—_-:‘[“}?_ _, A~ j', —T 4

We substitute the expression (3.1) mto {2.13) and denote

= ’ > L
Dy= —z;:EiT'CJ_Q‘_._ (17 — sin° PLJ) o= Ju }

where w 1s the angular precession veloeity.
Passing in (2.13) to the slow time 7 = L.3t, where 3= 4"1 - B!, we obtam

¢ =sin@singcos (1 + D).
' = cos O —sin® )1 + D) -28 L, (sinf) '
(3.2)

¥

QG Hl om
B o Z Z’ ril A\rmk(smp)}“'" E-m—f:)(-u)s fﬂ:m EJ‘.{..COSHF:! Sl ll\SiYi B)Zn-,..lhn _ L_J e ])‘al!l: .9]
\‘é 1= m=h k=0
i gl =gl EREAT-BY G0 I8
3 Wi
., €7y and relations (3.1), we see that 3, v, &, ~ = For

Taking into account the assumption thatay,, ~s (/=0
svstern (3.2), onc has the first integral

c= s B — sin” @) - 28 ! L{_EU + Dy :'

o+l om
% Z E Z 8, A}, 5 (C08 m:d i H(Siﬂ m':n (cos _(;n):['m'ﬂ{sin p(_!}‘:fm- mtk) = const (33)
i=() m=0 k=0
[f the influence of the light pressure torque 1s absent, 1€, ifa,,, =0{=0,. ..¢) thensystem (3.3) has the form
(34

# =sinfsin ocos(1+ D),

e cOs HU[ = Sil]: + HI + l}t‘)

v
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0
/2
0 =2 0
Fig. 1
und has the first integral N
¢, = sin® O(j— sin- ) = const. _(33)

frp=1(=0anda, =ug Tk 05, then, according 1o (3.2). the equations for # and ;> can be written 1 the
slow ume as
¢ = (1 +D;)sin@ sm pCos i,

of
1

1}

(1+ D) cosfij, - sin® ¢
a7 E s B o 213/2 3 3 a2
== 7 a:__é fEnl i £ 7 Y] =gy ”h-_RBI (] w5 sin’ 'LJ[,)_

=

I'he paper |2] was the firstto proposc using the averaging procedure for studying the motion of anearty dynamically
spherical satellite under the action of gravitational torques. In 7). the evolution of rotations of a satellite with close
values of three principal moments of inertia under the action of the light pressure torgue was studied. Comparing
system (3.6) with the corresponding system | 10] for the case @, = dy, T COSE,, We note that the influence of the
gravitational torque manifests itself in the factors I + 1), in the differenual equations for # and ¢ in the slow ume.
The expression for g, coincides, up to the factor 11+ Dy b, with a similar expression in | 10]. The existence of this
factor is stipulated by the influence of the gravilaﬁnna'l forees. In our case, the first integral (3 3) can be writlen 45

e 4 S -
o £y = 8in° B(p, —sm- @) = const, 37

where (¢, 1s expressed as in (3.5). The first integral {3.7) coincides with the corresponding expression 1n | 10]

The study of system (3.5) is similar to that of the corresponding system in | 10]. Here the variables range n the
ntervals 0 <9 <7 and 0S¢ <27, and the parameter g can take Vanous valuesin-—oo<p<+oc. The domain of admissible
values of the parameters (Co. 4 }canbe represented as D=DuDU [3,, where each subdomain is characterized by the
following properties: D; 13 determined by the inequalities ji; 2 ¢; 2 0(p; 2 1), the subdomain 17 is determined by the
mnequalities jiy 2y Z 4~ 1(0<p, ). and the subdomaimn 5 18 determined by the inequalities 0 > - T RIS
The boundaries of the subdomains D,. D,. and D, are the singular subdomains of system (3.5), In the domans [,

and [J;, the motion occurs as oscillations in # and oscillations ot rotations tn 2. [n the domain D)., oscillations oceur
in #and in . —

We consider eleven different special cases of the choice of the parameter j, {se¢ [10]). For example, for pu, = 1.7.
{he curves of # against 2 obtained numerically from the first integral (3.5) are shown inFig. 1. These graphs correspond
only to oscillatons n 6. In the variable o, oscillations occur only in the interior of the separatrix si 0= gt —si @)
and rotations oceur m the extenor of the separatrix.
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4. A SPECIAL CASE OF THE EXPRESSION FOR THE SHAPE COEFFICIENT
Let
@ {eos: )= Z o, cos™F 5 +azcos’ e, 4.1
kA

Tnn this case, the equations for # and » become
i’ = (1 + Dy)sind sin g cos ¢,

£/ = (1+ Dy)cos (e —sin” i — oy sin” #).

g d v B ~R."- N ) Lo g 3 -

1y = —— — ¥, 38, u.l=(l+l).,) ‘_—r?‘-—"';(l — YR — 40 sin” p‘n+3:\sm4 [OR R i4.2)
b K3 ' ! 64 Lz F- ?

:‘:, _ 4 sin® po(d —5si0° p)

e’ " T R -40sm? p, +35smt
\We note that the terms containing even powers of a., disappear after averaging
Taking mto account the assumption that ¢y ~ £ and relation (1.9}, we find that 3, o and v are quantities of the
order of =
For system (4.2), we have the first integral

A i 1 N "
oy =sin° H(_u: — SN P — Ty sm‘ﬁ) = gonst 4.3

in [9], the motion of a triaxial nearly spherical satellite under the action of the light pressure forque was studied.
where the light pressure torque coetficient has the form (4. 1y and the coefficient a_ satisfies the same assumptions as
in our problem.

Comparing system (4.2) for € and p with the corresponding system in [9]. we note that the influence of the
pravitational torque manifests itself in the factor (1 + [)y3. The first integrals of the systems compared also coincide up
10 the factor (1 + Dy !
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8
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Fig 3

b
]
. W

[n svstem (4.2}, the variables § and i Tange m the intervals 0 < @ <wand 0 S ¢ <7 The parameter j cah ta ke
arbitrary values, —oC < i < +0C. The domain of admussible values {a. () 18 shown 1n Fig. 2.

We consider nine different typical cases of the choice of the parameters (jt. ) corresponding 1o each of the
Jomains shown i Fig. 2 (see [9D- For example, the famuily of phase trajectorics of the averaged system in the
plane #. & for = - 5 and o = —2 (case (ay)) 1s shown 1 Fig 3 These graphs correspond 10 oscillations in the
angle #, and in the angle o, we have gither oscillations (m the \nterior of the separainx) of rotations (n the extenor
of the separatrix), the stationary points (L. L) are of the center type and the stationary points (£ 7. 0) are of the
saddle wype. In case (qy), we also have a similar character of the dependence of 6 on 7. The other domains of the

dependence (4. o) can be studied by using considerations similar 1o those m [9]
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