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There have been many studies of the motion of a satellite relative to the center of
mass under the action of moments of various kinds of forces (gravitational, magnetic,
light-pressure, and others; see [1-4] and the literature cited there). Estimation of the
moments of the perturbing forces [1] indicates that at heights greater than 35,000-40,000
km above the Earth's surface, moments of light-pressure forces exert the greatest effect
on spacecraft. Using the averaging method, we investigate the motion relative to the cen-
ter of mass, caused by moments of light-pressure forces, for a spaceeraft with a triaxial
ellipsold of inertia 1n the case in which the spacecraft is a body of revolution.

1. Consider the motion of a spacecraft relative to the center of mass under bhe ac-
tion of moments of light-pressure forces.

: We introduce three right Cartesian coordinate systems, the coordinate origin coincid-
ing with the center of inertia of the satellite [1, 2]. The OXYZ system moves transla-
tionally around the orblt together with the satellite; the Y axis is parallel to the norm-
al to the orbltal plane; the Z axis 1s parallel to the direction of the radius vector of
the orbit and its perigee; and the X axls 1s parallel to the veloeity vector of the center
of mass of the satellite at the perigee. The position of the kinetic-moment vector L in
the OXYZ system 1s specified by the angles p and o, as shown in Fig. la.

To construct the OLILEL coordinate system assoclated with vector L, we run the Ll

axls in the OYL plane perpendicularly to vector L, such that it makes an obtuse angle with
the Y axis. The L2 axis completes the Ll and L axes to right coordinate systems. :

The axes of the assoclated Oxyz system coincide with the principal central axes of
inertia of the satellite. .

We speclfy the mutual disposition of the principal central axes of inertia and the
L, Ly, L, axes by the Euler angles g,%0 (Fig. 1b).
“:- B
%¥In this case the direction cosines of the 0x, Oy, 0z axes relative toc the OLlLPL

system can be expressed in terms of the Euler angles o,¥% 0 via the formulas

&y =c08 ¥ cos p—cos O sin Y sin @, @y=—cos } sin g—cos O sin P cos p
®y=sin B sin§, o,=sin P cos p+cos 6 cos Ppsin g G

@z==—-3in ¥ sin @-+cos 0 cos P cos @, o, =—sin B cos P

@, =sinfsing, a,=sinfcosp, a,;=cosb

We will assume that the spacecraft moves in an elliptical orbit around the Surn; we
will dlsregard moments of all forces except for light-pressure forces, We will further
assume that the surface of the spacecraft is a surface of revolution, with the unit vec-
{tor of the axis of symmetry k directed along the Oz axis. As shown in [1, 3], in this
case we have the followling formula for the moment of light-pressure forces M acting on
the satellite:

M-(&(S.)Ralfm)‘er : (1 e )
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Fig. 1

In the case cf complete absorption,

R , E.(R \ :
a(e) r=pS(e)a(e), p=2(3) (1.3)

In (1.2) and (1.3), e, 1s the unit vector in the direction of the radius vector of
the orbit; g is the angle between the directions of e, and k, so that ]mxif—ﬂns.; R is

the instantaneous distance from the center of the Sun to the center of mass of the satel-
lite; RO 1s a fixed value of R, e.g., at the initial instant; a.(e.) is the coefficient of

the moment of light-pressure forces; S is the area of the "shadow" on the plane normal to
the flux; zO‘ 1s the distance from the center of mass to the center of pressure; c is the

speed of light; and E0 is the energy flux of light pressure at a distance R from the-cen-
ter of the Sun. 1If RO ls the radius of the Earth's orbit, then E0 = 1200 kcal-m_g—hr,
Pa=  EuJew4,72-10~* hr-m=2, :

Following [1], we assume that a;=a,(cose,) ; we approximate ac'by polynomials in de-

grees of cos €

The moments of light-pressure forces have a force function that depends only on the
positlon of the axis of symmetry of the body in space [1]. We expand a.(cose) 1n =z
Taylor series: )

@,=ay,+a,co8e,+ ... (1.4)

Now we consider only the first two terms of the expansion.

2

The equations of perturbed motion of the satellite with a force function in the vari-
ables L,p,0, 9,968 have the form [2, U]:

__ 1 U . 1 U ctgp U
B “Tsinp o' ° Lsinp do L ay o
S Sl e (L_;_*)_ 1 oU 24
L -_'“ , O=LsinOsingcosg 28 " Tane oe
ctgh aU vz i—-——-——m'm-—m"p)
+ TR q:-Ls:nBcosB(C T B +
i v . sing  cos'g 1 /80U au
ST, — ) ——| —ctgp+——ctgh
Lsin® 38" -z A B ) L(ap"’”' 30 ¢ )

In some cases, it 1s convenient to employ the kinetic energy as a variable instead of
the angle 8:

T="/,L*[ (sin® /A +cos® p/B)sin* 0+cos* §/C] (1.6)

whose derivativez has the form

I < [ (ain‘cp cos’ @
T I3 M,+Lsin6| cosd T+ 3

1
"E) (M, cos §— (1.

-1
.
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o = L.
—M, 3in §) +sin g cos ¢(1/A—1/B) (M, cos $+Misiny) J ( ]
force function U depends on the time t vlia the true anomaly v(t), and on the direc-—
b tion cosines @wPnts of the Oz axis relative to the OXYZ system:

UmU(v(t), ae, Bay 1s) (1.8)

4

; The projections of the vector of the moment of forces M onto the axes of the 0XYZ
system have the form [1]:

au au 174 -1/ F

Mym—yp . %Y -t OO u -1/ 3
i x é'!ah g, 1 ¥y da, It oy, Hx-ja—ﬁ-‘aa—;a—.ﬁs (1.9)
3 z 2
{ while the projections onto the OLLlL2 axes can be expressed 1in terms of My, MY’ MZ via
5 the formulas . i
: M= (M x sin 0+M; cos 6) cos p— M, sinp

”!-xxmﬂ—ljﬂﬂﬂ (1 10)
My== (M, 8in o+ M, cos o) sin pt+Mycosp :

To system (1.5) we need to add an equation that describes the change in the frue
anomaly over time:

L. 2 _[ui—e) b
prigre LG D u.—?v—:-—[-——?—_] (1.21):

wy is the average angular velocity of motion of the center of mass along the elliptical
orbit; NG is the orbital period of the satellite; e and P are the eccentricity and focal

parameter of the orbit; and u is the produet of the universal gravitational constant and
the mass of the Sun.

Moment of forces (1.2) corresponds to force function ENuw&)—-Rfﬂ?jaJcmst(msmL

Let us consider the two cases a,(cose,)=a, and a.(cose.)=a,cose, which correspond to the
‘first two terms of the expansion of a(coss,) 1in a Tayler series (1.4).

B 1 rp———

In these cases, the force functlons have the form U(cose,)=—R,*/R-*a, cose, and U(cose,)=,
= - R*/R %, cos’e, Tespectively, where cose, = c08 v-+ats sin v,

o

Note that the first case corresponds, e.g., to a spherical satellite whose center of
mass 1s displaced relative to the center of the sphere.

We introduce small parameters into system (1.5), (1.11). Let us assume that wy ~ o€

g
and also that a,~e<€i or ay~e, depending on which case is considered. Let us investi-
gatie the solution of system (1.5), (1.11) for small ¢ on a large time interval t~at,

We *employ the averaging method [5, 6] to solve the problem. The error of the averaged

i solution for the slow variables 1s of order ¢ on the time interval over which the body

£ executes ~¢ 1 revolutions. We perform averaging with respect to Euler-Poinsot motion us-
: ing the procedure of [2, 4] for nonresonant cases,

2. Let us conszsider unperturbed motion (e = 0) when the moment of the light-pressure
forces (1.2) 1s equal to zero. 1In this case the rotation of the satellite 1s Euler-
Poinsot motion. The quantities o, p L T,v become constants, while 8, 9,9 become certain
functions of time. Also, &p L T,v, will be slow variables 1n perturbed motion, while
the Euler angles 0,9, % will be fast varilables.

Let us average the first three equations of system (1.5), (1.7) along the trajectory
of unperturbed motion. According teo [2], averaging 1s performed first with respect to Wy
then with respect to € and . which are related by (1.6). It is performed along closed
trajectories of the kinetlc-moment vector in Euler-Poinsot motion. Averaging of the right
sides of the first three equations of (1.5) with respect to ¢ leads to the equations

in

1 &, . i &, . i
CThums o U Tamp ae s L0 W=y vy

(2.1)




Let us average the right side of (1.7) with respect to the angle y. 1In the first
case we have, on the basis of (1.9) and (1.10),
M, =—Ry'R-a,.[cis 8in p cos v+, sin (0—v) cos p—7: 8in p sin v]
My=—R,*R~*2,,8, cos (a—v) (2.2
My=—Ry"R~"as.{ —as cos p cos v+, sin (0—v) sin p+1, cos psin v]

Using the expressions for the direction cosines as Pt of the Oz axls relative to
the 0XYZ system [1]:
@,=sin P sin B cos p sin 0—cos ¥ sin 0 cos g+cos Bsinpsing
Pi==—sin ¥ sin 6 sin p+cos 8 cosp
Ya===-8in ¥ 3in O cos p cos g+cos ¢ sin 6 sin o+cos B sinpcos g

—~
ra
.
Lt
e

we obtain from (2.2), using elementary manipulations,
Mi>y=0,  (Mycos p—M, sin $>,=0
{M, cos v+M, sin ¥ e=R,*R%a,, sin B sin p cos (o—v)
It follows that, after averaging with respect to y, Eq. (1.7) becomes

R’
-—R—:a.. -}——%) Lain'oginnpmwsingcos(a—v) ) t2.%)

Projectlion of vector L onto the axes of the associated coordinate system yieldé

L,=LsinOsing, L,=LsinBcosp, L,~=Lcosh (2.5}
As a result we have
R i 1\ L.L, .
T'—RT'G..(—I—-E) L'ampcos(d—v) (2.6)

Now we average the right side of (1.7) with respect to ¢ for the second case. The
formula for the moment (1.2) of the light-pressure forces ylelds, with allowance for the
fact that the 0z axils coincides with the axis of symmetry of the satellite,

M=a, R R-*(—1spa0x+a,7:0y) (2.7)

As we know [2], the moment of gravitational forces acting on the satellite has the
form :

M=3uR-*( (C'~B’) 1:ps0x+ (A'—C') 2s1:0y+ (B'~A’) 2:p:01] (2.8)

Hége A', B', C' are the principal central moments of inertia of a satellite in a
gravit&fﬁonal field.

The moment of light-pressure forces as given by (2.7) coincides with the moment of
gravitational forces (2.8) acting on a satellite in a gravitational field, whose prin-
cipal central moments cof lnertla have the form

A'=B'=2a, R RI3p, C'=a, R R/3p (2.9)

The motlion of a satelllte relative to the center of mass under the action of gravi-
tational moments was investlgated in [2], where the projections of the moment of gravita-
tlonal forces nnlo the OLl, OLE’ OL axes can be represented as follows for a triaxial
satellite: o a
M =3a.(1+ecosv)*(1—e%) "Z (830,83—038;85)

jmmt

M=30, (1+ecosv)*(1—¢%) "Z (8:8,81,—86583,)

-t
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E
My=3w,'(1+ecosv)’(1—e?) -’Z (6,8;8,—5:6,84;)
|

10 62, 53 are the direc-

1L2L system, equal to 61=cos p cos(v—q), 8;=sin(v—0), §,=

Here sy=A'anantBana,+C'aney,, ay are defined by formulas (1.1); &
t+ion cosines of vector 5., in the OL

= sinpcos(v—0).
Calculations show that

30, (1+ecosv)?

(M, =0, (M, cos $+M,sin Plg= TR

(8,7+6,2—28,*) X
1
X E—-sin B cos B(A’ sin® p+B’ cos® p—C*)

{M;cos $—M, sin§)y =
3we(1+ecosv)® 1
- __-“—_?jg___(%ll_all-al’)'é_(-d’_g *)sin 0 sin @ cos

Allowing for the fact that A' = B', In accordance with (2.9), we have

M, )t- (”1 cos ¢_Hl sin ’}‘-0. - %
3’ ({1+ecoav)®

(M, cos p+M,sin >, = T

(8,"+8,"—28,*) (4’—C’)3in 6 cos §

It follows that, after averaging with respect to ¢, Eq. (1.7) becomes

3
3(&.‘(14"“"} ( 1 1 ) ’insacosasin‘px

T=l&-C) == 7" F _
X co8 @ (8,"+8,"—28,%) = (A'—C") X (2.10)
i 1 \L.L,L, 3a,'(1+ecosv)' _, T
x(?"‘ﬁ) T ey oo

In formulas (2.6) and (2.9), only Lx’ Ly’ L depend on the fast variables. But the

average values of the products LXL and LxLyLz over the polhede of unperturbed meotion are

equal to zero, in view of the fact that the segments of the polhodes are symmetrical with
respect to the oxy’ Oxz’ Oyz coordinate planes. In both cases, therefore, after averaging

over the polhode Egq. (1.7) assumes the form T = 0, and hence T = TO = const. This means
that, averaging, the equations for the angles o and p can be treated independently of the
other equations for slow variables.

©w i
The average values with respect to ¢ of the force function in the first and second

cases will be, respectively,

(U gmm—ay Ry A2 cos 0 sin @ cos (0—v) 5,595
(I ym=—a, R} ‘[1—'I.sili‘ﬂhin'pcos'(a—v) o

Now 1t is necessary to average the force function along the polhode of unperturbed
motion. Unperturbed motion of a triaxlal satellite was investigated in detail in [4].
To calculate the averaged value of the force function in first approximation, we need to
determine

v N N
lim —;]'Icos 8(t)dt, lim iN fsinr0(t)ar

N—+m " Nesm .

where 8(t) 1s the angle of nutation as a function of time in unperturbed motion.
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Fig. 2

for the sake of belng definite, we take A > B > C. Functlon g(t) 1s defined differ-
2

on the sign of 2TOB = LOE. If ETOB =L, > 0, then (see [, 71) cosB(v)=
< 0, we obtain cosd(s)=acnt. Here dn 1, €N T are elliptic func-
in 1 with period Ny=4K(¥), K(¥) 1s a complete elliptlc inte-

ently, depending
= adnt. For ETOB - LO

tions [8] that are perlodic
gral of the first kind,

a,_s.+h . _C4-B _( 2T, _..L) BC
ite,” ' 4 B-C’ L B!B-C’
L{A—B) — a’—h -
T p" ﬁ ABe, Y"l"" {3 T

-

The formulas for the modulus of the elliptic functlons k2 and B are given for h > 0.

The remaining expresslons are valid for any h.

Motions 1n the nelghborhood of the Oz axls (axis of ﬁbment of inertia C) correspond

to m>0 (27T.B—Ls>0), whlle motions in the neighborhood of Ox (axis of moment of inertia A)

correspond_to k<0 (2T.B-L,'<0) ; moticn along the separatrilx corresponds to h=0 (2T.B=L:).

Using the formulas for integrals of elliptic functions [B], and allowing for the

fact that cos@(t)=adnrt,cosB(t)=acnt we obtaln

" A% . 2T .B—Ls*>0
. | 1 2K (k%) *
lim —— = —— =
’_z: N !cosﬁ(t)dt N _Ecos&(r)dt (2.12)

¢ 0 tor 2T\ B—Lo*<0

. N Ne
i
lim —Isin’ﬁ(l)dt - -NL I sin*8(t)dt=
® s

N

- E 2 .
v 1—6—(—’5—)“ tor 2T,B—Ly3=>0
- K (k) (2.13)
at E{k*)
1———[#— + ¢ 9T .B-Ly
5 1 ® T,B—L. <0
Here E( 2) 1s 2 complete elllptic integral of the second kind.

averaging cver the polhode in the first case we obtain the following

a
oris for p and o:

p'=—ay. R, (LR*)~'F sin (6—v)

o' =—a,,R,} (L,R*)~'F ctg pcos (a—v) (2.14)
- ra . ) - = s
F K 2T B-L3>0; F=0, 2T.B-Ls<0

In the second case the averaged system of the first approximation for o and g be=-

comes
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p'=—as, Ry} (2LyR*) G sin p sin 2(0—v),
0 =—a, R} (LR")~'G cos p cos’ (0—v)

f, E()

2 {‘i“ K 1]
1 (3], .. E(k)

?{T[k—i-i-m -*‘l} tor 2T,B—L*<0

The earlier notation 1s retained for the slow averaged variables.

tor 2Ty B—=L>0

In systems (2.14) and (2.15) it is convenient to change over to the new independent
variable v = v(t). In view of (1.11) and the equation of motion of the center of mass of
s, satellite along a plane elliptic orbit R = P/(1 + e cos v), after changing over from
tne independent varlable t to the variable v, systems (2.14) and (2.15) become

dp/dv=—a,.R* (L;YuP) ~'F sin (0—v) (2.16)
dajdve=—a,.R,* (L pP) ~'F ctg p cos (6—v)

dp/dv=—a,,R,* (2L,YiP)~*G sin p sin 2(a—v) (2.17)

i

do/dvem—a,.R. (LJP)~'G cos p cos* (a—v)

We set wx,=o—v. The coordinate % 1s the angle between the iné%antaneoﬁs radius vec-
tor e, of the orbilt and the projection of vector L onto the orbital plane. Thus, angles

p, % glve the position of vector L in the rotating coordinate‘system n, T, e, where n
1ies along the normal to the orbital plane, T along the transversal (Fig. 2). In the

variables p % , Egs. (2.16) and (2.17) become
dp/dve=—aoR* (LsYpP)~'F sin x. (2.528)

dredv==—ao, R (LY iP) ~'F ctg p cos %—1
dpldve=—ay,R* (2L,Y pP) ~'G sin p sin 2x, (2.19)

dryJdv=—a,,Rs* (L,YpP)~'G cos p cos® x.—1

Systems (2.18) and (2.19) are autonomous and have the first integrals

—
y
g
o
s

L,y cos p—ao Ay ( m =tF cos e, ==const
Ly cos p—a.R,* (2YuP) ' G cos® e, =const G221

. . -« .
] Here ¢, 1s the angle between vectors L and e, (Fig. 2): cose.=sinpcosx..

The first integrals (2.20) and (2.21) differ from the first integrals for systems
that describe the variation of the angles p and %w in the case of a dynamically symmetric-
al satellite [1] only in terms of the multipliers F and G. Therefore, the results of [1]
can be ncarried over to the case under consideration of motion relative to the center of
mass of & spacecraft with triaxial ellipsoid of inertia that is a body of revolution.

The first integral in (2.20) can be written in the form
€08 y==const e b

where ¥ is the angle between vector L and straight line OP in the (n, er) plane, which
makes an angle p* with vector n. The angle o* is glven by the equation tgp*=—n, ny=a..R,"/

/ (LsYuP).
'Equation (2.22) means that in the (n, T, er) coordinate system the moticn of the
kinetic-moment vector L is uniform rotation with respect to v about the straight line OP.

BT}



The angular rotational veloclty of vector L was determined in [1]; 1t 1s equal to —Ji+n,%

Note that if the initial conditions T0 and LO are such that ETOB - Lod < 0, then

F = 0 and the angle p* is zero. Then the motion of vector L in the (n, T, er} system 1is

rotation with angular velocity 1 about the vector n. Veector L will be constant in the
OXYZ system. This means that the osculating elements p and o do not vary.

-
Z

If, however, 'I‘G and L0 are such that 2TOB - LD

and vector L rotates about the OP axis which 1s inelined with respect to the light source;
the angle of inclinatlon of the body is greater, the greater nge

> 0, then the angle p* is nonzeras

The motion of the satellite can be Investigated in the second case on the basis of
the first integral in (2.21) in the same way as was done in [1] for the case of a dynamic-
ally symmetrical satellite in a gravitational field in a circular orbit, since system
(2.19) differs from the system of equations describing the motion of a satellite in a
gravitational field in a circular orbit only in terms of the multiplier G, which depends
on the initial data T0 and Lof

The authors wish to thank F. L Chernous'ko, V. V. Beletskii, and L. D. Akulenko for
formulating the problem and for useful discussions.
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