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PERTURBED ROTATIONAL MOTIONS OF A RIGID BODY SIMILAR TO
REGULAR PRECESSION*

D.D. LESHCHENKO and $.M. SALLAM

Perturbed rotational motions of a rigid body, similar to regular
precession in the Lagrange case, when the restoring torque depends on
the angle of nutation, are investigated. It is assumed that the angular
velocity of the body is fairly large, its direction are close to the
dynamic axis of symmetry of the body and the perturbing torques are
small compared with the restoring torques. A small parameter is
introduced in a special way and the method of averaging is used. The
averaged equations of motion are derived in the first and second
approximations. Specific mechanical models of the perturbations are
considered.

Lagrange-like perturbed motions of a rigid body were also
investigated in /1/. Almost regular perturbed rotational motions of a
rigid body have been studied /2, 3/,**(**See also LESHCHENKO D.D. and
SALLAM §.N., Perturbed rotational motions of a rigid body with mass
distribution close to the Lagrange case. Odessa, 1988. Dep. at UkrNIINTI
28.06.1988, No.1656 - Uk 88.) and some attention has been given to
pseudoreqular*** (%% ESHCHENKO D.D. and SALLAM 5.N., Perturbed motions
of a rigid body similar to pseudoregular precession. Odessa, 1988. Dep.
at UkrNTINTI 28.06.1988, No.1656 - Uk 88.) precession ip'ithe Lagrange
case; in the former case it was assumed that a constant restoring torgue
is applied to the body.

1. Statement of the problem. We consider the motion of a dynamically symmetric rigid
body about a fixed point O due to a perturbing torque and a restoring torque depending on the
angle of nutation 0.

The equations of motion (dynamic and kinematic Euler equaticns) have the form

Ap" 4 (€ — A)gr = k(8) sin 8 cos ¢ -+ M, (1.1)
Aq + (4 — C)pr = —k (0) sin 8 sin ¢ + M,
Cr= My Mi=M; (p,q,r, %, 8,0, t) (i=1,23)
¥ = (psing+ gcosg)sin®, 6" =pcosg —gsing
¢ =r— (psin g+ ¢ cos getg0

The dynamic equations are written in terms of projections on the body's principal axes
of inertia, which pass through the point 0. Thus D, q, r are the projections of the angular
velocity vector on these axes, M; (i=1,2,3) are the projections of the vector of the
perturbing torque on the same axes, assumed to be periodic functions of the Euler angles
P, 8, @ with periods 2m, and 4 is the equatorial and C is the axial moment of inertia about
the point 0, 4 = C.

Tt is assumed that a restoring torque k (0) depending on the angle of nutation is applied
to the body. In the case of a heavy top we have k — mgl, where m is the mass of the body,
g is the acceleration due to gravity and 1 is the distance from the fixed point 0 to the
centre of gravity of the body.

The perturbing torques M, in (1.1) are assumed to be known functions of their arguments.
If there are no perturbations (M; = 0, t=1,2,3) and k (0) = const , Egs.(l.1) are those of
the Lagrange case.

We will make the following assumptions:

P+, ik | M |<k(i=1,213 (1.2)

which mean that the direction of the angular velocity of the body is close to the dynamic
axis of symmetry, the angular velocity is large enough to impart to the body kinetic energy
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significantly exceeding the potential energy due to the restoring torgue, and the perturbing

torques are small compared with the restoring torques. Inegualities {1.2) justify the in-
troduction of a small parameter t<-1, so that
P=2P, g=1¢Q, k(0) =eK (0), M, = e2M;*(P,Q. 1, ¥, 0, @, f) (1.3)
(i =1, 2,3

Conditions (1.2) and (1.3) were also adopted in /3/, but there the restoring torque k
was assumed to be constant. 1In /2/ the third inequality of (1.2) was replaced by the
dition |Mi|<€k(i=1,2), M;~F.

The new variables P, @ and the variables and constants LB oo Kood €, MY are
assumed to be bounded of the order of unity as e&—+ 0. Our problem is to investigate the
asymptotic behaviour of system (1.1) for small ¢, provided that conditions (1.2) and [1.3)
hold. We shall use the method of averaging /4-6/ over a time interval of length ~eg,

con=

2. Averaging procedure. Let us apply the transformation of variables (1.3) to system
(1.1). Dividing both sides of the first two equations by &, we obtain

AP+ (C — A)Qr = K (0) sin 0 cos g + eM,* (2.1)
AQ" + (A — C)Pr = —K (0) sin O sin ¢ + eM,*
Cr' = e®M*, v = & (P sin ¢ + @ cos ¢)/sin @

0 =¢(Pcosg—Qsing), ¢ =r—e(Psing -+ 0 cos qletg 6

Considering the zeroth-approximation system, we put ¢ =0 in (2.1).

Then the last four
equations of (2.1) yield

r=rob=1 0==04, p=rt+q, (2.2)-

Here 71y, Yo, 05, 9, are constants - the initial values of the appropriate, variables at
t=A0 Substituting expressions (2.2) into the first two eguatibns of system (2.1) with
e =0 and integrating the resulting system of linear equations for P, @, we obtain

P = acos vy + b sin vy + A, sin (it + ). (2.3)
Q = asin v — bcos Yo + Ay cos (ret + )
a= Py — hy8in @g, b = —Q, + A, cos g,
ho = KoClryt sin By, yo = not, 1y = (€ — A)d g =£ 0
Inrofre | <1, Ky, = K (8,)

Here P, @, are the initial values of the variables P, § defined in (1.3), and the
variable ¥ =Yy has the meaning of the phase of the oscillations. System (2.1) is essentially
non-linear, and therefore we introduce an additional variable ¥, defined by the equation

T =mn790)=0,n=(C— A4 (2.4)
For e&=10 we have y =1y, =n¢ by (2.3)
solution of system (2.1), (2.4) when g = 0.
Using (2.2), we eliminate the constants from
the resulting equations for a and b:

Egs.(2.2) and (2.3) determine the general

the first two equations of (2.3) and solve

a=Pcosy+ @Qsiny — Asin (y + g} (2.5)
b=Psiny—Qcosy+hcos(y-+ q) A= KC'sin0

Define a new variable § as follows:

W‘g’ r=r, &b (2.6)

We now consider system (2.1) for e~ 0 and Egs.(2.5) and {(2.6) as transformation
formulae (involving the variable y) from variables P, @, r to variables a, b, 6. Using these
formulae, we transform system (2.1) and (2.4) from variables P, Q. rih, 8 @, v to new vari-

ables a4, b, 8, ¢, 0, o, v, where
@=3+q (2.7)
After some reduction we obtain the following system:

a =eA™ (M cosy + M7 siny) — eKD,, cos B (b — KDy, sin 8 cos a) (2.8)
— eK'Dy, sin B sin o (a cos @ + b sin &) + €2KD,, 8 cos 0 (b —
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2KD;, sin 6 cos a) + e*K'D,,8 sin 0 sin o (a2 cos o -
bsin o) + e'KDy, My sin 0 sin o
b =ed™ (M,"siny — M, cos ) + eKDy; cos 0 (@ + KDy, sin 8 sin «)
eK'D,; sin B cos o (a cos & + b sin @) — e?KD, 8 cos 0 (a +
2KDy, sin 0 sin @) — e*K'Dj, 8 sin 0 cos @ (2 cos o -4 b sin a)—
e* KD, M, sin 6 cos
& =eC!'M7 ¢ =¢(asina — becos a)fsin 8 4 eKD;, — e2KD .8
0 =c(acosa +bsine), ¥ =n, + & (C — A)471§
o =CA%rg + eCA™8 —ectg B (asina — bcos o) — eKDy, cos B +
£?KD 8 cos 0
D= C7ryl, K' = dK/de

Here M," are the functions obtained from M;* (see (1.3)) after the substitution (2.5)-
[(Z2.7):
M (a, b, 8,9, 0,0,y ) =M*P,0,r 0, q. 8 (i =1,2,3) (2.9)
The system of Egs.(2.8) has the form

T = ¢F, (r,y) + €F, (z, y). z(0) = z, (2.40)
= w; + &g (z, y) + &g (x. ¥), ¥ (0) = y*°
Y= w, +ehy (r, y) - ey (2, ), ¥ O0) =y

The vector-valued function &= (z',..., 7% consists of the slow variables a, b, 8,1, 8:
the symbols y' and y* denote the fast variables , ¥ w,, W, are constant phases, equal to
[ CAdlr, and (C — A)A7'r, , respectively. The vector-valued functiaqns Fi, ginhy (i=1,2) are
determined by the right-hand sides of Egs.(2.8). L&

| We denote the two-dimensional vector (g, k) by Z,  We shall assume that the perturbing
{ torques M;* do not depend on t.

Following the well-known procedure for constructing asymptotic formulae for system (2.10)
/5/, we shall try to find a change of variables
z=z* + eu, (z*, y*) + e, (z*, y*) + ...
y=y* + e (2% y*) + ey (2% p*) 4.
y = (y:‘ y:)‘ * = (x*l‘ T5 4 .‘.I:*‘-'}. y;k P (y!vl' y*z)

which reduces system (2.13) to the form

2t = 24, (z*) + A5 (x*) + ... (2.11)
¥ =@+ 2B (2%) L 2B, (x*) + . . ., 0 = (0. ©;)

To do this we must choose suitable functions

Uy, Uy ¥y, V3. The eguations for the vector-
valued functions u;, v; are /5/

waw, /dy* = Fy (2%, y*) — 4, (z¥) (2.12)
wdvldy* = Z; (z*, y*) — B, (z*)

Here (df/dzr}) is the matrix of partial derivatives | Bf ot || (6,7 = 1,2, ..., 3). The functions
Ay (x#%), By (%) are defined by

" 2;‘! 2_‘;'[
4, (2%) =0 5 Fy(z®, y*) dy* dy* (2.13)
i )
2;'! 2
Byw*) = o | § Zalaty) ayms ay
00

The function u, (z*, y*) mnust be a solution of the equation

s
dy*

G (x*, y*) = Fo (2%, y*) +

o =G (2% y*) — A, (z%) (2.14)

aF. aF, du . Gu
ot = 5 Ay (2t = Brla)
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The function A, (z*) is defined as follows:

8
|

T an
A

1

‘42 (‘t*} =5 e

G (z*, y*) dy*r dy® (2.15)

os

o
We shall now determine the averaged system of equations to a first approximation for the
slow variables
¥ = AR B RO =a (2.16)
as well as the system to a second approximation for the slow variables
2" = ed; (2,%) + 4, (5*), 2% () = % (2.17)
and the system of equations in the second approximation for the fast variables
¥* = 0 +eB; (m* (1), gt (0) =% ¥° = ("% ¥™) (2.18)
which is readily integrated:

3
pHl =y +utt+e SB,(:cl* (5))ds (2.19)
o

To investigate the second-approximation system (2.17), we transform variables by putting
1t = ef, giving system (2.17) the form

dr*dt = A) (%) + &d, (0.%) (2.20y

In this case the time interval (0, T/e) over which the solutions of the original system
(2.10) are being investigated becomes an interval (0, 7) independent of &, The solution of
system (2.20) is assumed to have the form th ¥

-

,* (1) = D (1) 4 ea® (1) + O (eF) i L 2.21)

Substituting (2.21) into (2.20), we obtain the following systems of equations for the
vector-valued functions 200 (x) =z, (1) (v =et, i =1, 2):

dzil'dy = A, (zM), 2 (0) = x,, (2.22)
dz®fde =4, (@ (P + 4, (@ (1), 22 (0) =0 (2.23)
where A, is the matrix of partial derivatives of the vector-valued function A, (z): Al e
I ad, oz ||. As system (2.22) is linear, it is often easier to investigate than system (2.20).
Let X (r,¢) denote the general solution of the first-approximation system (2.22):
Xi=4,(X), X(0,e) =e =g (2.24)

Then the functions z{V (), ® (1} are given by the expressions

W) =X (T, 1,), 2NT) =D (v) 5 D7 (ty) (7y) dry (2.25)

a

Here @ is the fundamental matrix of the homogeneous equation corresponding to the second
approximation:

® (1) = || 3K (v, ¢)/deflomx, M (1) = 4, (20 (1)) = 4, (X (5, 7))

Define a vector-valued function

L P
2" (t) = = (ed) + ex™ (ef) + e, (20 (et), y° 4 wt + aSB1 (x% (e5) ds) (2.26)

L]
[

' (t) =y +wt + e 581 (V) (es)) ds

0

The above formal procedure for construction the functions z°(t), y.*(f) was justified in
/8/.

Thus, the construction of approximate solutions ' (f), ¥’ (f) reduces to the following
procedure: use Fourier series to solve Egs.(2.12) and (2.14); then use formula {2.15) teo con-
struct the vector-valued function A4, (z*); using (2.25), determine the solutions gz (r) and
2 (1) of Egs.(2.22) and (2.23); finally, use formula (2.26) to obtain the required
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approximations ¢ (i), ¥ (f). The procedure will now be implemented for a few specific systems
of equations for the dynamics of a rigid body.

Our examples of perturbations will all be such that the Fourier expansions of the right-
hand sides of Egs.(2.12) and (2.14) contain only a finite number of terms. Hence the con-
dition for Egs.(2.12) and (2.14) to be solvable reduces to verification of a finite number of
conditions of the form om, 4+ wym 0. In all our examples these conditions have the form
€44, =0, (C — Ay A4, =0, and the latter are always satisfied thanks to our initial assumptions.
i As an example of a restoring torgue which depends on
the angle of nutation, let us consider a rigid body with a
spring attached to it at a point N, with the end L of the

spring fixed (see the figure). The forces acting on the
body are the force of gravity mg and the elastic force F
of the spring, whose modulus is proportional to  the

deformation of the spring F=v (s —s), where v is the

stiffness of the spring. In this case the restoring torque
is
k(8) = mgl 4 vhz [1 — sy (h* + £ — 2hsz cos B)"2] (2.27)

where O =i, 0C=1,0L=nh, LN =s = s (8).
By (1.3), k() = eK (8).

3. The case of linear applied dissipative torques.
We will now consider the perturbed motion of a rigid body
in the Lagrange case, allowing for the torgues applied to
the body from the external medium. We shall assume that
the perturbing torgques M, (B=1,2,3) (see (1.3)) have
the form /7/

M, = —e[,P, M, =

—e 0, M, = —eyr, I, I, >0 (3.1)
where I, and [; are certain constants of proportionality which clqpend on the properties of
the medium and the shape of the body.

The first three equations of (2.8) in this case, in variables g, b, 8, ¥}, 6y o, 7, become

@ = —ed™, (a + KDy, sin Osina) — eKDy, cos 0 (b — (3-2)
KDy, sin 8 cos a) + e247 KD,,5 sin 6 sin a 4 €2KD,8 cos 0 (b —
2KD,; sin 8 cos ) — e*[3KD,, sin 8 sin « — eK'D ), sin 8 sin a (a cos o +
b sin @) + e*K'D,b sin 8 sin « (a cos o -+ b sin «)
b = —ed™I, (b — KD, sin 0 cos 2) + eKDy, cos 0 (a +
KDy, sin 0 sin a) — e*KA71,D,,6 sin B cos & — e2KD,,0 cos 0(a +
2KDy, sin 8 sin a) - 2] (KD, sin 8 cose + KD, sin 8 cos « (a cos o +
bsin a) — e2K'D .8 SlnBcosa(acosa + bsin a)
§ = —eC Uy — e°C LB

The other equations of system (2.8) remain unchanged.
To construct an approximate solution of system (3.2), we will use the averaging procedure

described in Sect.2. The vector-valued functions A; and B| are determined from formulae
[2.13) , .

= (A0} (i=1,2,...,5), Bi={BM), (=1,2) (3.3)
A = — A" g — KDy beos§ — Yy K'Dy,b sin 8
A® = A + KD,ya cos 8 + Y,K’Dya sin 8

A, = —C Uy, 4, =KD,;, 4, =0

B — CA§ — KD, cos 8, By® = (C— A)A78

The fourth and fifth components of the vector-valued function

/ wy fu, M} (i=1,2...35)
may be written
1, = _ADU (a cos oo -+ b sin a)/sin 8 (3.4)
1;,® = AD,, (asin & — b cos a)
Note that combinations of the type MPcosy+ M siny and M°siny— M cosy, as follows

from Egs.(2.8) and (3.2), do not depend on 7 and the right-hand sides of these equations
depend only on one fast variable « This fact, pointed out in /3/, is analogous to the suf-
ficient conditions obtained in /1/ for the averaging procedure to be applicable to the
equations of motion with respect to the angle of nutation alone. The solution of Egs.(2.12)
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is then simplified.
The vector-valued function Ay (2%) , after suitable reduction using formula (2.15), may
be written as
A, (z%) = (4,9} (i=1,2,... 5) (3.5)
A, = KDy, [6b cos & — *,KD, Ab (3 cos? 0 — 1) — I,Ca cos 0] -+
Y, K'D1,8b sin @ — Y, ADy3b (K’ sin 0)* — Y, AK'D 4K sin 20 —
1,1, Dy,0d (K sin 8)/db
A = —KDy, [8a cos 0 — Y, KDy Aa (3 cos* 8 —1) + I,C76 cos 8] —
Yy K'Dyyba sin 0 4 Y/, AD ge0 (K sin 8)* - Y, AK'D 0K sin 26 —
1,1, Dy,bd (K sin 0)/d0
A = —CUB, 4,9 = KD, (—8 + KD, cos 8)
A,® = LLED,, sin 8

Let us determine the solution of the averaged system of equations to a first approxi-
mation (2.16), taking into account (3.3) , for the slow and fast variables:

a') = oxp (—eA 7 ,t) (¢° cos wt — &° sin wt), (3.6)
b = exp (—eA™N 1) (b° cos wt 4 & sin wi)
80 = —eCU ryt, $1 = eKy Dyt + 1y, 0D = 0,
al) = CA™rgt — eKol)yy cos OByt — Yye? A + o,
P = ngt — 1,6 (C — AYATIC gt
w = Y,eDy; (2K cos 0 + K’ sin 0)p_y, *

where the quantities @a°0° n, are determined by (2.3); 1,6, and o are constants,
equal to the initial values of the Euler angles at f = 0. Comparison of expressions (3.6)
for the slow variables a'Y), b)) with the parallel formulae {4.50' of /3/ in the case when
A = const shows that the expressions are identical. . .

On the basis of these formulae, using (2.26), one can construct the components of the
function z." () corresponding to the variables P and 8, writing them as

e () = o + eKoDyyt + S @.7)
S = %K 2Dy, cos By + V,e" K Doyl at* —
eADy; exp (—ed ™ t) €7 sin (2 + g)isin 0,
8e” (t) = 8y + e, KDy, sin By -+ eAD,, oxp (—ed 1) C° sin (o) — )
cos 0 = sin p = b exp (eA U 1)/C°, C° = (a”® 4 b2)h

Comparison of these expressions with formulae (4.7) of /3/ shows that the two groups are
identical at K = K,;. In formula -(3.7) for 8. the term of order & 1is the product of
the slowly exponentially decreasing factor exp (—e47Y1), representing energy dissipation,
and the oscillating factor sin (a® — u).

The value of the damping constant and the nature of the slow variation of the phase of
small oscillations for #W, af!), can be read off from formulae (3.6) , which differ from the
parallel formulae (4.5) of /3/ in the value of w.

The term SO (g, f) in the formula (3.7) for .7 (t) 1s of order & over the time
interval (0, Te™'). The expression for the angular velocity of precession w,= K,Clry! is
known from the approximate theory of gyroscopes /8/. Our expression for S® (e, ) improves
this formula for the problem.

For the example considered above, with the restoring torque given by formula (2.27) and
taking formula (2.13) into consideration, the solution of the averaged system of equations
in the first approximation (2.16) for o' ¢!V &' @) ) g of the form (3.6). Only the
expressions for % and o change; they may be written as

B =Dk Hy T (3.8
al) = CA-Yt — Dk (By) teos 8y — Ve A-Uyr 2 | ¢
In (3.6},
w = Dy {{mgl 4 viz) cos ¥y — vhas, [2 (F 4 2% cos Uy —
Shz cos'y — hz] (A* -} s — Zhscos an"’fﬂ

while 4% (8) in (3.8) is defined by (2.27) with #8:=a,.
The components of the function =z,'(s) corresponding to the variables ¢ and @ in our
example have the form
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Be® () = o + Dusk (@) 1 4 S (3.9
S = Dyy cos Bok® (B) £ 4 12D, Tk (8,) # —
eDy A exp (—ed=U ) € sin (M L gsin g,

8,7 (1) = 0y - el4Dyy sin B4k (0,) ¢ + eDyyA exp (—ed =11ty C° sin (2D — )
cos o = sin p = b exp (ed-U 10"

4. The case of a small constant torque. Let us consider the motion of a rigid body in
the Lagrange case under the action of a torque which is constant in the body axes. Then the
torques of the forces acting on the body have the form M; = e!M;* = e*M;” = const (i = 1, 2, 3).
To construct an approximate solution of system (2.8) using the expressions for M, , we apply
the averaging procedure of Sect.2. The vector-valued function B, is determined as in (3.3),
and the vector-valued function A4; obtained from (2.13) has the following components:

AWM = _Kﬂub cos 8 — lfzK'D“b sin 6 (‘i’i)
A = KD, acos 8 4 Y,K'D,a sin
A® = Cpf AW = KD A =0

The fourth and fifth components of u; are represented by (3.4). The function 7 Tl Bt
is determined from (2.15) and may be written as

AW = Db [8K cos 0 — Y, AK*D,, (3 cos? @ —1) + 1/,K'6 sin 6 + (£.2)
AD,, (K' sin ) — Y, AK'D, K sin 26]
A = —Dya 8K cos 8 — Y, AK* Dy (3cost 0 — 1) +Y/,K’8sin 8 +
YeAD,, (K’ sin 8) — YLAK'D, K sin 20]
A, =0, 4, = —KDy,8 + AK™Dy5co8 B, 4,00 = 0,

The solution of the averaged system of equations in the first approximation {2.16),
where the coefficients are as in (4.1), is as follows for the slow and fast variables:

all) = g° cos wt — b° sin wt, b = b° cos wt + a° sin wt (£.3)
8N = oCIM ¥, Y = eK Dt 4 4, 60 = 9,
all) = CA7ryt — eK,Dy; cos Byt + YyelAIM 20 L o
YO = ngt 4 Ve (C — 4) CLAIM *¢2

(the notation is the same as in (3.6)).

We note that the only component of the constant torque occurring in the solution of the
first-approximation averaged system (4.3) is the component M;* in the direction of the axis
of symmetry. The projections M,*, M,* of the perturbing torgue vector cancel out on
averaging. A comparison of formulae (4.3) for the slow variables a, b  with the parallel
formulae (5.3) in /3/, with K = const, shows that the formulze are identical.

By (2.26) and formulae (3.4), (4.2) and (4.3), the components of the function x" (1)
corresponding to the variables 1 and 8 are

Pe* () = o + eKoDyt + VO (4.4)
Vi = etK*Dasd c08 Oy — o2 Dy, MHK 1* — Dy AC° sin (a1 + x)/sin 8,
8 (8) = 8, + D, AC” sin (a® — )

cos x = sin g = b1/

In the expression for 8", the bounded oscillating term involves the non-zero initial data

a’, b, The term V™, as in the previous problem, corrects the formula @, = KCryt,
already known from the approximate theory of gyroscopes, for the angular velocity of pre-
cession.

We note that the formulae for the angles of nutation and precession do not inveolve the
parameters of the perturbing torques if attention is limited to the first approximation. The
effect of the perturbations on the regular precession of the body is not taken into con-
sideration in that case, so that construction of the second approximation is indispensable.

Going back to our example, when the restoring torque depends on the angle of nutation as
in (2.7) and taking (2.13) into consideration, the solution of the first-approximation averaged
system (2.16) for oW, s, W, M, 4@  hag the form (4.3). Only the expressions for % and
a¥ change, being written as follows:
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= Dok (Og) £+ (4.5)
wll = CA=Iryt — Dygk (8,) cos Ogt -+ HyetA=1005 2 + To
In (4.3)
w = Dy {{megl + viz) cos Gy — Yyvhas, [2 (B2 - 5°) cos B, — 5hz cos® 8, + hs] (k2 +
2% — 2hz cos B,) _"'lf}

and k(®) in (4.5) is given by formula (2.27) with 0=34,
The components of the functions =z”(#) corresponding to the variables 4,6 in our

example are written as follows:

$e® (8) = o + Dy (8,1 ¢ 4 ¥ (4.6)
VO o 162D, M % (B,) £2 -+ Dyod cosBk (0,) t — £0,,4C° sin (a4 %)fsin B,
8,7 (f) = Oy + eDy ACT sin (&Y — y)

cos % = sin 3 = MY
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