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In this paper, we investigate perturbed rotational motion of a rigid body, that is close to regular precession
in the Lagrange case, when the restoring moment depends on the angle of nutation. It is assumed that the angular
velocity of the body is large; its direction lies close to the axis of dynamic symmetry of the body; and the two
projections of the vector of the perturbing moment onto the principal axes of inertia of the body are small as
compared to the restoring moment, while the third is of the same order as it. A small parameter is introduced in
special fashion, and the averaging method is employed. The averaged system of equations is obtained in first
approximation. Some examples are considered.

1. STATEMENT OF THE PROBLEM

Consider the motion of a dynamically symmetrical rigid body relative to fixed point O, in response to a
perturbing moment that depends on the angle of nutation § and the perturbing moment. The equations of motion
have the form

Ap+(C—A) gr=k(8)sin 6 cos p+M,
Aq'+(A—C)pr=—k(6)sin 0 sin o+M,
C?‘.=M;, Ml‘=Mi(Ps g, ¥, ea @, t) (i':i: 2? 3)
(1.1)
¥'=(psin @+ cos ) cosec 6, 6"=p cos ¢—gsin g
¢ =r—(psin @+g cos p)ctg O

The dynamic Euler equations are written in the projections onto the principal axes of inertia of the body,
passing through point O. Here p, g, r are the projections of the angular velocity vector of the body onto these axes;
M; (i = 1, 2, 3) are the projections of the vector of the perturbing moment onto the same axes, which are 27-
periodic functions of the Euler angles ¥, 6, ¢; y is the angle of precession; 6 is the angle of nutation; ¢ is the angle

<of intrinsic rotation; and A and C are the equatorial and axial moments of inertia of the body relative to point O,

“A = C.Itisassumed that the body is acted upon by a restoring moment that depends on the angle of nutation k(6).
In the case of a heavy top, we have k = mg/, where m is the mass of the body; g is the acceleration due to gravity;
and / is the distance from fixed point O to the center of gravity of the body.

The perturbing moments M, in (1.1) are assumed to be known functions of their arguments. In the absence
of perturbations M, = 0,i = 1,2, 3 and k() = const, Egs. (1.1) correspond to the Lagrange case.

We will make the following initial assumptions:

PP, Cr>k, |M|<k (i=1, 2), M~k 12)

which mean that the direction of the angular velocity of the body is close to the axis of dynamic symmetry; the
angular velocity is large, so that the kinetic energy of the body is much greater than the potential energy resulting
from the restoring moment; and two projections of the vector of the perturbing moment onto the principal axes of
inertia of the body are small as compared to the restoring moment, while the third is of the same order as it. On
the basis of inequalities (1.2), we introduce the small parameter ¢, and we set
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p=tP, g=eQ. k(8)=eK(6), e<1

M=eM*P, 0,7, 4,8,¢,1) (i=1, 2), Mymel,*(P, O, 7. v, 6, o 1) i

Paper [1] also considered perturbed motion of a heavy rigid body, close to the Lagrange case. The
conditions for possible averaging of the equations of motion with respect to the angle of nutation were given, and
an averaged system of equations was obtained. A numerical solution of the averaged system was developed for the
case of linear dissipative moments, In contrast to (1], studies [2,3] considered the case of a body that rotates rapidly
about the axis of dynamic symmetry’, and therefore the generating solution was not the trajectory of motion in the
Lagrange case, but rather some simpler solution. As a consequence, explicit analytic solutions could be obtained
via the averaging method in first and second approximations.

In [2], as in this study, conditions ( 1.2) and (1.3) were assumed to be observed. In contrast to this study,
it was assumed in [2] that the body is acted upon by a restoring moment whose maximum value is equal to k, and
which is generated by a force of constant magnitude and direction, applied at some fixed point of the axis of dynamic
symmetry.,

In contrast to the third inequality in (1.2), it was assumed in [3] that the perturbing moments are small as
compared to the restoring moment, |[M,| < k (i = 1,2, )

Perturbed rotational motion of a rigid body, close to pseudo-regular precession in the Lagrange case, was
investigated earlier”.

The new variables P and Q, as well as the variables and constants v,6,0,KA,C, M*(i'=1,23), are
assumed to be bounded quantities of order unity as e = 0,

The problem that we pose is that of investigating the asymptotic behavior of the solutions of system (1.1)
for small ¢, if conditions (1.2) and (1.3) are satisfied. We will employ the averaging method [4-6] on a time interval
of order ¢

The averaging method is extensively employed in problems of rigid-body dynamics. The method was used
in [6-8] to investigate some problems of dynamics, in particular for dynamically symmetrical bodies. Averaging with
respect to Euler-Poinsot motion was first performed in [9] for an asymmetrical body. Perturbed motion of a rigid
body, close to the Lagrange case, was investigated in [1-3,6,8,10]. Simplifying assumptions (12) or (1.3) make it
possible to obtain a fairly simple averaging scheme in the general case, and to investigate a number of exam ples.

2 AVERAGING PROCEDURE

We make the change of variables (1.3) in system (1.1). Cancelling by ¢ on both sides of the first two
equations in (1.1), we obtain *

AP'+(C—A)Qr=K (8)sin 6 cos g+eM,*
AQ'+(A—C)Pr=—K(8)sin 6 sin Q+elM.*, Cri=cM *
G2 (2.1)
W ¥'=¢ (P sin ¢+Q cos p) cosec B, 8" =¢ (P cos 9—Qsin ¢)
¢ =r—e (P sin g+Q cos ) ctg 6

First we consider the Zero-approximation solution, and we set ¢ = 0 in (2.1). The last four equations in
(2.1) yield

r=ru, ‘pu'lpn‘ 9=991 (P‘=rot+tpn (2.2)
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Here 1, ¥, 8, ¢, are constants equal to the initial values of the variables for t = 0. We substitute (2.2)
into the first two equations in (2.1) for € = 0, and we integrate the resultant system of linear equations for P and
Q. We write the solution as follows:

P==q cos y,+b sin Yo+ K,C~'r,~' sin 0, sin (rot+@,)
Q=a sin Yo—b cos 1, +K,C~'ry~" 5in B, cos (ret+q0)

" . : (2.3)
a=P,—K,C~'r,"" sin 6, sin @,, b=—0,+KC " sin 8, cos @ere™"

Tu"not. ny= (C-A )A"n'l"‘O, I nofro!gi, HotK{eo)

Here P, and Q, are the initial values of the new variables P and Q, introduced in accordance with (1.3),
while the variable v = 7, is understood as the phase of the vibrations. System (2.1) is essentially nonlinear (the
frequency of natural vibration of the variables P and Q depends on the slow variable r), and therefore in what
follows we introduce the additional variable v, defined by the equation

Y=n, v(0)=0, n=(C—A4)A~"'r (24)

For € = 0 we have ¥ = ¥, = nyt in accordance with (2.3). Equations (2.2) and (2.3) define the general
solution of system (2.1), (2.4) for ¢ = 0. By eliminating constants and allowing for (2.2), thc first two expressions
in (2.3) can be rewritten in the following equivalent form:

P=aq cos y+b sin y+KC~'r~*sin B sin @ (2.5)

Q=asin y—bcosy+KC~'r~'sinfcos ¢
and can be solved for @ and b:

a=P cos y+Q sin y—KC='r~ sin 0 sin (y+¢) o
b=P sin y—Q cos y+KC~*r~* sin 8 cos (y+o)

We consider system (2.1) for ¢ # 0, and expressions (2.5) and (2.6) as change-of-variable formulas
(containing the variable v), which specify the conversion from variables P and Q to the Van der Pol variables 2 and
b and vice versa [6]. Using these formulas, we convert in system (2.1), (2.4) from the variables P, Q, r, ¥, 6, ¢, ¥ to
the new variables a, b, r, ¥, 6, «, ¥, where :

a=y+g 2.7

<z After pcrformmg the manipulations, we obtain a system of seven equations (instead of the sixin (2.1)) that
% more convenient for what follows:

a'=eA~" (M cos y+M," sin y) —e KC~*r~! cos 6 (b—KC~'r~' sin B cos &) +
+eKC-*r-*M,® sin 0 sin a—eC='r~* sin 0 sina(a cos a+b sin &) dK/dB

b =e A~ (M sin y—M,° cos {) +eKC='r~* cos 8 (a+EKC~'r* sin 0 sin a) — (2.8)
—eKC-r~*M,® sin 8 cos a+eC~'r~" sin 6 cos (e cos a+b sin &) dK/dB
r'=eC-'M,°, ¢ =¢ cosec 0 (a sin a—b cos o) +eKC~'r™"
a'=CA~*r—¢ ctg 6 (a sin a—b cos o) —eKC~'r~"' cos 6
8'=e(acosa+bsina), {'=(C—4)4~'r
Here, the M,” denote functions obtained from M,* (see (1.3)) as a result of substitution (2.5)-(2.7), i.e.,

Mf(a. b,r,¢.0, a4, t)=M*P, Q18 ¢t) (i=1273) (29)

We should note that the conversion from the two variables P and Q to the three variables g, b, v stems
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from considerations of convenience; for € = 0 the system for P and Q has the form of a linear system, while
substitution (2.5) is nonsingular for all ¢ and b.

We introduce vector x, whose components are provided by the slow variables a, b, r, ¥, 6 of system (2.8).
Then this system can be written as follows:

r=eX(z, a, ¥, 1), a'=CA='r+e¥(z, a)

2.10
Y'=(C—4)A=r, 2(0) =20, & (0) =gy, 7(0)=0 &

Here vector-valued function X and scalar function Y are defined by the right sides of (2.8); the initial values
are obtained in accordance with (2.2)-(2.4) and (2.7).

Let us consider system (2.8) or (2.10) from the standpoint of employing the averaging method [4-6]. System
(2.8) contains the slow variables a, b, r, . 6, and also fast variables, namely the phases « and v and the time t, with

v appearing only in the first three equations of (2.8). The system is essentially nonlinear, and direct use of the
averaging method is extremely difficult [11]. For simplicity, we will assume that the perturbing moments M, * are

independent of t. Since the M;* (i = 1,2, 3) are 2x-periodic in ¢, in accordance with substitution (2.5)-(2.7) we have i

that functions M,° from (2.9) will be 2x-periodic functions of & and 7. Then system (2.10) contains two rotating
phases & and ¥, and the corresponding frequencies CA™'r and (C - A)A™r are variable. In averaging system (2.8)

or (2.10), we should distinguish two cases: the nonresonant case, when frequencies CA"r.@nd (C- A)A™r are not
commensurable; and the resonant case, when they are commensurable [11]. A very important feature of system

(2.10) is the fact that the frequency ratio is constant; | (C—A)A~'r]/[CA-'r]=1—AC-", and the case of resonance
occurs for

ClA=ifj, ilj<2 (2.11)

where i and j are natural relatively prime numbers; in the nonresonant case C/A is an irrational number. As a result
of (2.11), averaging of nonlinear system (2.10), in which X is independent of t, is equivalent to averaging of a quasi-
linear system with constant frequencies. This can be achieved by introducing the independent variable 5.

In the nonresonant case (C/A = i/j), we obtain the first-approximation averaged system by independent
averaging of the right sides of system (2.8) with respect to both fast variables a, y. As a result, we obtain the
following equations for the slow variables:

a’=eA-'n,—ebKC*r* cos 0+eKC-*r~* sin Ops"—*/2eC-*r'b sin 6dK/d0
b =eA='n,+eaKC'r* cos 6—e KC-*r-* sin 0 Ms*t+'/:C~'r~'a sin 6dK/dp
r'=eC'ps, p'=eKC-'r, §°'=0
2a 2n

T s 9)'4%,1 .J (8,° cos 1+M,* sin y) dec dy

in 2x

H2(a, b, 7,9, 0)= éj J (M.* sin y=M.’ cos y) da dy,

g i 3x (2'12)

us(a, b,r,¢,8)= : II M, da dy
4y,

in 2n

Hs' (a, b,r, ¢, 9)"#” Mysinadady, p.(a,b,r ¢, 0)=

2n in

=ﬁ2—;[;[ﬁf,'cosadad'r

18



Solving averaged system (2.12) for perturbing moments of specific form, we can determine the motion of
the body in the nonresonant case with an error of order ¢ on a time interval of order ¢*. We should note that the
last equation in (2.12) can be integrated; it yields 6 = 6,

The above system is equivalent to a two-frequency system with constant frequencies, since both frequencies

are proportional to the axial component r of the angular velocity vector. Therefore the applicability of the averaging
method can be substantiated in the same way as for a quasi-linear system [2].

In the resonant case (2.11), system (2.10) is a single-frequency system. We replace e by a new slow variable
that comprises a linear combination of the phase with integer coefficients:

hom=g—i(i—j) 'y, i/j#4, ilj<2, i, j>0 (2.13)

Svstem (2.10) assumes the form of a standard system with rotating phase:

z'=eX(z, i(i—)) vtk 1)
(2.14)
A=e¥(z, i(i—j)~'y+hr), y=(C—4)A4A~"

where its right sides are 2|i - j| w-periodic in . We can set up the first-approximation system by averaging the right

sides of (2.14) with respect to this period of variation of the argument y. As a result, we obtain the followmg system

of equations for the slow variables: 3!

a'=eA " 'w,*—eKC~'r'b cos 0+eKC~*r~? sin B *'—'/,eC~*r~'b sin 6dK/d0

b'=eA-"w,*+eKC-'r'a cos 0—eKC—*r~* sin Bp;**+'/,eC~'r~'a sin 6dK/dO
r=aC'np*
¢ =eKC-'r ! 6'=0, ,’'=—eKC'r*cosB
2ali—jl
1
bt (@b 8 A) = ———— | (M. cos + M. sin Y)dy
2nli—j| |

2m|i=jl

p*(a. b,r, ¢, 0,h) = i I (M sin y—M.’ cos y) dy (2.15)

1
2nli-j| |
2ati=jl

uﬂ*(aﬁbtrvlpsel}')‘ j M!n d'f

1
2 |i—j]
2xli-jl

P p,*‘(a.b._r,\t,ﬁ.}.)—-—-—- j Msinady, w*(a,b,rvy0,4)=
& 2nli—j| .

zali-ji

S M, cosady

1
2n|i=j|

It is assumed that, in the integrands, the variable « is replaced by A in accordance with (2.13). We should
note that the next-to-last equation in (2.15) has the solution § = 6,

Solving averaged system (2.15) for perturbing moments of specific form, we can determine the motion of
the body in the resonant case with an error of order e on a time interval of order ¢”. The substantiation procedure
is the standard one [4,5].

As an example of a restoring moment that depends on the angle of nutation, let us consider a rigid body
with a spring attached to it at point N, the end L of the spring being fixed. The body (see the accompanying figure)
is acted upon by the force of gravity mg and the elastic force F of the spring, whose modulus is proportional to the

deformation of the spring F = A(s - s,). Here X, is the stilfness of the spring. In this case the restoring moment
has the form
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J (8) =mgl+hhz[1—so(hi+z—2ha cos 6) "] (2.16)

ON=z, OC=l, OL=h, LN=s=s (8) k(8)=eK(8)
In what follows, using the technique described above, we consider some specific examples of perturbed
motion of a rigid body.

3. CASE OF SMALL CONSTANT MOMENT

Consider motion of a rigid body in the Lagrange case, in response to a small moment that is constant in
the associated axes and is applied along the axis of symmetry. In this casc the perturbing moments M; (i = 1,2, 3)
have the form

M =M,=0, M;=eM;*=const (3.1)

Converting to new slow variablesa, b, 1, ¥, 9, in the nonresonant case we obtain an averaged system of type
(2:12):

a'=—eKC-'r'bcos 6—
—1/,6C-*r~*b sin 6dK/d6

b'=eKC-'r 'acos 6+ ' : (32)
+1/,6C~*r~'a sin 6dK/dB

reeC-tM,*, ¢ =eKC-r=", 8'=0
o Integrating the third equation in (3.2), we obtain

r=ro+eC M *t 33)

We substitute (3.3) into (3.2) and integrate the equation for y:

t=4o+ K (M:*) =" In|1+eC M,*r 't (34)

Here y, and r, are arbitrary initial values of the angle of precession and of the axial velocity of rotation.
As follows from (3.2), the angle of nutation 8 does not vary over the time of motion of the body 6 = 6,.

After replacement of r by expression (3.3), the solution of the system comprising the first two equations
in (3.2) can be written as follows:

a=P, cos p+Q, sin p—KC~'ro™" sin b sin (B+q.) (3.5)
b=P, sin p—Q¢ cos p+EK.C'ro"" sin 8o cos (B+q:)
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= (M,*) =" [K, cos Bo+'/2 sin6, (dK/dB) ems.) In| 1 +eC-'r ' Mo*e|, Ko=K(8:) (3

Substituting into (2.5) and (1.3) the expressions for 4 and b from (3.5), and for r from (3.3), we can
determine the following:

p=po cos(Y=B)—go sin(y—B) +k,C~'r,~" sin 6, sin (y—Pp—q,) +
+kC='ry=t (1+eC-'r,~'M,*t)~'sin 6, sin @ 55)
3.6
g=po sin (Y=p) +go cos (Y—B) —keC~*rs~" sin 8, cos (Y—p—go) +
+kC='ry=! (1+eC"'r,~' M *t) ~'sin 6, cos @
Y=(C—A) A~ (eC~'M*¢[2+1st), po=ePo, Ge=tQ,, ki=eK(6,)

For the example under consideration of a body with a spring attached to it, the expressions for p and q can
be obtained from (3.6), with k replaced by 2.16), and k; replaced by the same expression for 6 = §,. Here

p=(eM,*)~* [k, cos B,+A,h*z%s, sin® O, (h*+2*—2hz cos 6,)=%]In |1+
+eC-'r M *t|.

In accordance with (3.3), the quantity |r(7)|, # = et, increases if the parameters r, and M,* are of the
same sign; and decreases if the signs are different. The angle of precession ¥ in (3.4) contains a variable'component
whose modulus increases monotonically in both cases; in the first case it is bounded for finite 7 ~ 1, while in the
second it tends to infinity as 7 = -Cr,/M,*; here r = (.

The variable fin (3.5) and (3.6) varies similarly to ¢ if 6, # + /2. The slowvariables 4 and b are bounded
27-periodic functions of g.

In accordance with (3.6), the components p and q of the angular velocity vector contain bounded oscillating

terms that result from the nonzero initial data p, and q,; and also terms that result from the restoring moment (1.2)
and (2.16).

We should note that, when the spring is not present, comparison of the resultant expressions (3.5) and (3.6)
for the slow variables a, b, p, q with the corresponding formulas of [2], if we formally set A\, = 0 in them, yields
coinciding expressions.

It should be emphasized that formulas (3.6) for p and q contain variable and constant components of the
restoring moments k(6) and k, = k(6,).

4. CASE OF LINEAR EXTERNAL DISSIPATIVE MOMENTS

Consider perturbed Lagrange motion with allowance for the moments acting on the rigid body from the

cgxternal environment. We will assume that the perturbing moments M, (i = 1, 2, 3) are linear-dissipative [12]:
W

M,-—Bl‘p, M2='—‘8I|g, A!’=_£Igr, Ii! I.>0 (4-1)

Here I, and 1, are constant proportionality factors that depend on the properties of the medium and the
shape of the body.

We write the perturbing moments with allowance for expressions (1.3) for p and q:
M|=‘—B:I’.P, Ma':_"E:Ile M:‘=‘_Eljr (4.2)

In accordance with § 2, we convert to new slow variables a, b, 1, , 6, and we obtain averaged system (2.12)
of the form

o =—cel A-a—eC~'r'b (K cos 8+"/, sin 6dK/dB)

b'=—el,A~'b+eC-'r~'a(K cos 6+/, sin8dK/dB) (4.3)
re=—el,C'r, ¢'=eKC-'r, 6'=0
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Integrating the third equation in (4.3), we obtain (1, is the arbitrary initial value of the axial rotational
velocity)

re=r, exp(—els,C~'t), re¥0 (44)

Equation (4.3) for y" can be integrated, with allowance for (4.4); it yields (¥, is a constant equal to the
initial value of the precession angle for t = 0):

p=vpo+KI,~re~ [exp(e] L11)—1] (45)

In addition, as can be seen from (4.3), the angle of nutation maintains constant value 6 = 6, Replacing
r by (4.4) in the first two equations of (4.3), we obtain a system of the form

o' =—tel,A-*a—eC-'r,~*b exp (el,C't) (K cos 6!/, sin 0dK/d8)
b'=—el A-tb+eCtr,ta exp(el,C't) (K cos 8+, sin 8dK/d0)

whose solution can be written as follows in accordance with [13] (p. 534):

a=exp (—el,4~*t) [P, cos n+Qo sin n—K,C'r,~" sin 8, sin(n+@) ]
b=exp (—el,4~"t) [Posin n—(. cos n+K,C-*re" sin Bo cos (n+&)] T(46)
n=r,"'1;"'(K cos 6+'/: sin 9dK/de) [exp(el,L't)—1], Ko=K (80)

As a result of substitution of the expressions for and b from (4.6), and for r from (4.4), into expressions
(2.5) and (1.3) for P, Q, p, q, we have

p=exp (—el\d™'t) (o cos(y—1) —go Sin (y=n)+kC e sin 8o sin (1—
—n—qo) ] +kC'r,~* exp(el,C~'1)sin B sin @

g=exp(—el,A~"'t) [P sin (y—1) +go cos (y=1) —koC~'rs~" 8in 8, cos(1—

4.7
—n—o) ] +kC-'r~! exp(el,C~'t)sin B, cos @ (&0
C'_A [']
= %Tfa_ [4 — exp(—el,C'1) 1, pe=ePs

gn"EQm koy=eK,

We should note that, in contrast to the corresponding formulas of [2], expressions (4.7) contain a constant
component k, and a variable component of the perturbing moment kf).

X For a body with a spring, we need to substitute into (4.7) expression (2.16) for the restoring moment k =

“%(8), and this same expression for 6 = 6, for k, = k(6,). In this case

n=r,"'1;"*¢~"[k cos 8+*/:h Rz sin® B (h*+2*—
—9%hz cos 0) =" [exp(elsC-'t)—1]

Thus, we have developed a solution of the first-approximation system for the slow variables in the case of
dissipative moment (4.1). We should note certain qualitative features of motion in this case. The modulus of the
axial rotational velocity r decreases monotonically in exponential fashion in accordance with (4.4). The increment
of the precession angle ¥ - y, increases exponentially slowly in accordance with (4.5). It follows from (4.6) that the
slow variables @ and b tend monotonically to zero in exponential fashion.

In accordance with (4.7), the terms of the projections p and g, resulting from the initial values p; and qq,
attenuate exponentially. At the same time, the projections p and q contain exponentially increasing terms that are
proportional to the restoring moment, thus leading to an exponential increase in (p* + O

Comparison of the resultant expressions (4.6) and (4.7) for the slow variables @, b, p, q with the
corresponding formulas of (2], the spring being absent (we formally set A, = 0), indicates that the expressions
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coincide.

The authors with to thank F. L. Chernous’ko and L. D. Akulenko for posing the problem and for useful
discussions.

REFERENCES

1. L. D. Akulenko, D. D. Leshchenko, and F. L. Chernous’ko, "Perturbed motion of a rigid body, close to
the Lagrange case,” PMM, vol. 43, no. 5, pp. 771-778, 1979.

2. L. D. Akulenko, D. D. Leshchenko, and F. L. Chernous’ko, "Perturbed motion of a rigid body, close to
regular precession,” Izv. AN SSSR. MTT [Mechanics of Solids], no. 5, pp. 3-10, 1986.

3. D. D. Leshchenko and A. S. Shamaev, "Perturbed rotational motion of a rigid body, close to regular
precession in the Lagrange case,” Izv. AN SSSR. MTT [Mechanics of Solids], no. 6, pp. 8-17, 1987.

4. N.N.Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Vibrations
[in Russian], Nauka, Moscow, 1974

5. V. V. Volosovand B. 1. Morgunov, Method of Averaging in the Theory of Nonlinear Vibratory Systems
[in Russian], Izd-vo MGU, Moscow, 1971.

6. N. N. Moiseev, Asymptotic Methods of Nonlinear Mechanics [in Russian], Nauka, Moscow, 1981.

7. V. V. Beletskii, Motion of an Artificial Satellite Relative to the Center of Mass [in Russian], Nauka,
Moscow, 1965.

8. V. A. Yaroshevskii, Motion of an Unguided Body in the Atmosphere [in Russian], Mashinostroenie,
Moscow, 1978. v

9. F. L. Chernous’ko, "Motion of a satellite relative to the center of mass in response to gravitational
moments,"” PMM, vol. 27, no. 3, pp. 474-483, 1963,

10. G. E. Kuzmak, Dynamics of Unguided Motion of Flight Vehicles upon Entering the Atmosphere [in
Russian], Nauka, Moscow, 1970.

11. V.1 Arnol'd, Supplementary Chapters in the Theory of Ordinary Differential Equations [in Russian],
Nauka, Moscow, 1978.

12. V. N. Koshlyakov, Problems in Rigid-Body Dynamics and Applied Gyroscope Theory: Analytic
Methods [in Russian], Nauka, Moscow, 1978.

13. E. Kamke, Handbook of Ordinary Differential Equations [Russian translation], Nauka, Moscow, 1971.

18 April 1979 Odessa



