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| Abstract—Perturbed rotations of a rigid body close to the regular precession in the Lagrangian case under the
? action of a restoring moment dependmg on slow time and nutation angle, as well as a perturbing moment slowly
| varying with time, are studied. The body is assumed to spin rapidly, and the restoring and perturbing moments
i are assumed to be small with a certain hierarchy of smallness of the components. A first approximation averaged
system of equations of motion for an essentially nonlinear two-frequency system is obtained in both the non-
resonance and resonance cases. Examples of motion of a body under the action of particular restormg perturb-

ing, and control moments of force are considered.

1. STATEMENT OF THE PROBLEM

Consider the motion of a dynamically symmetrical
rigid body about a fixed point O under the action of a
restoring moment depending on a slow time T = €7 and
a nutation angle 6 as well as a perturbing moment
slowly varying with time. The equations of motion have
the form [1]

Ap+(C—A)qr = k(1,0)sinBcos@+ M,

Ag+(A-C)pr = —k(t,0)sinB8sing + M,,

Cri= M3, M.t = Mr(P’ q.nY, 9’ (P,‘t),

1.1
T=€t (=123 el

V = (psing + gcos@)cosecO, 6 = pcosg —gsing,
8 @ = r—(psing + gcosg)coth.
Here, p, g, and r are the projections of the vector of
angular velocity of the body onto the principal axes of
inertia of the body originating at the point O. The val-
ues M, are the projections of the vector of the perturbing
moment onto the same axes. They depend on the slow
time T = e and are periodic functions of the Euler
angles . ¢, and 6 with periods 2x. Here, A is the equa-
torial and C the centroidal moments of inertia of the
body about the point O, A # C. The body is assumed to
be subjected to a restoring moment k(t, 8) slowly vary-
ing with time andPr-periodically dependent on the
nutation angle. In“the absence of perturbations, when
M; =0 and K(t, 6) = const, Eqgs. (1.1) correspond to the
case of a Lagrangian gyroscope.

. ®

System (1.1) is examined under the following
assumptions:

(p2+q2)”2<r, Cr">k,
|M1‘2]<k, My~k,

which mean that the direction of the angular velocity of
the body is close to the axis of dynamical symmetry;
the angular velocity of axial rotation is sufficiently
large so that the kinetic energy of the body is much
greater than the potential energy determined by the
restoring moment; the two projections of the vector of
the perturbing moment onto the principal axes of inertia
of the body are small as compared to the restoring
moment; and the third projection is of the same order as
the restoring moment.

Inequalities (1.2) allow one to introduce the follow-
ing relations:

p=¢eP, g=¢€eQ, k(1,0) = €eK(t,0),
M, = €ME(P,Q,1,v,8,0,7),

M; = eM¥(P,0.r. v, 6,9, 1).

The new normalized variables P and Q and the func-
tions K and MF¥ (I=1, 2, 3). as well as the variables r,
v, and 6 and the parameters A and C, are assumed to be
bounded values of order one as € — 0; the angle of
pure rotation ¢ ~ £, .

Earlier [1, 2], rapid rotations of a ngtd body c[ose to |
the Lagrangian case under the action of a constant
restoring moment k = const [I] were considered. The
case where the restoring moment depends on the nuta-
tion angle k = k(0) and the perturbing moment also
depends on the slow time T = & was studied in [3].

(12)

T = &t,

(1.3)
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<P
Bclow weexammcamorcgmcralcascwhereﬂxe
restoring moment depends on both the nutation angle
and the slow time k = k(t, 8); in particular, k = ky(t) +
ky(t)cos0. The perturbing moment is assumed to be

- slowly varying with time and is represented by func-
tions of the form M, =

Mp.q.r.¢.0,9.0. |
- Itis proposed to investigate the asymptotic behavior

of system (1.1) for small € provided that condiffons ;

(1.2) and (1.3) are valid. For this purpose, we employ
the method of averaging [4, 5] over the time interval of
order €. The method of averaging enjoys wide appli-
cations in problems of the dynamics of rigid bodies.
The simplifying assumptions (1.2) or (1.3) allow one to
obtain in the general case a rather simple scheme of
averaging and to investigate a number of examples.

2. CONSTRUCTION OF AVERAGED MOTION
EQUATIONS

Let us make the change of variables (1.3) in sysiem

(1.1). Dividing both sides of the first two equations in
(1.1) by £, we obtain

AP+(C-A)Qr = K(t,8)sinOcos@ + eM¥,
AQ +(A-C)Pr = —K(1,0)sinBsing + eM%,

Cr = eM3, Wy = e(Psin@+ Qcos@)cosec, (2.1)

¢ = r—e(Psing + Qcos¢)coth,
8 = g(Pcos@— Qsing).

In terms of [4, 5], system (2.1) is two-frequency and
essentially nonlinear, since the frequencies depend on a
slow variable r.

We start with considering the first approximation
system and set € = 0 in (2.1). From the last four equa-
tions, we find

r=ry, W=y, 6=86,

;::;' (.P = rot 'l'(PO, Ko = K(to, Bﬂ)
Here, ry, Wy, 8, @, and T, are constants equal to the ini-
tial values of the variables at 7 = 0. Substituting equali-
ties (2.2) into the first two equations in (2.1) fore =0
and integrating the obtained system of linear equations
for P and Q, we obtain .

2.2

P = acosy+bsiny + KC_'r_:sinﬂsian,
0= asiny—bcosy+KC"‘r"sinBcosq),

a = PO—KOC_Ir{,ISinBDsin(po,

| 2.3)
b =—-0Qi+KyC ry sinBycosg,,
Y=n ¥0)=0, n=(C-A)A"r=0,
Infd<1, o=¢@+y.
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Here, a and b are the osculating variables of the Van der
Pol type introduced instead of (1.3) and the variable y
can be treated as an oscillation phase.

Consider system (2.1) for £ # 0 and relations (2.3) as
the formulas of the change of variables (containing the
variable ) that define the passage from the variables P,

we pass in system (2.1) from the variables P, Q.r.y, 0,

7

Q to the variables g[ b and back. Using these formulas /} j\d\}z

¢, and 7 to the new variables a, b, r, v, 8, a,'y,and‘l:
Note that the phases @, o, and 7y are related by a finite
relation, which turns out to be more convenient for fur-
ther investigation of a standard system with two rotat-
ing phases y and c. Performing some transformations,
we obtain a system of the form

@ = eA” (M) cosy + M3siny)

+eK(1,0)Cr > M3sin0sin®

—eK(t,0)C 'r ' cosO(b - K(1, B)C" r'sinBcosa)

I 9K, .. . | 4
-eCr smesma[ﬁ(acasa+bsmot)+.§:|,

b = eA” (Msiny — Mcosy)

—eK(t, 0)C2r *Mjsinfcosa
+eK(t,0)C'r'cosB(a + K(1,0)C ' r" smes.imgzz1
w6l 7 sinBcosa[g—';{(acosa + bsina) +§5]

a1
F = eC'M;,

y = e(asino — bcosa)cosec9+£!((1 ac',

6 = e(acosa + bsina),

a=CA r—-E(asmoc—bcosu)co{G
—eK(7,8)C 'r'cosB, 7= (C-A)A"'r,

M(a, b,r,y,0,a,7,1)
‘;MF(P!Q”’!W’B’(P’I) (1=1,2,3).

Note that, when K = const and M, is independent of
T, system (2.4) coincides with the corresponding sys-
tem that was investigated in [1].

Let us study the possibility of applying the method
of averaging to system (2.4). This system contains slow

variables a, b, r, y, 6, and T and fast variables, namely, .

the phases o and . The dependence of the restoring
moment on the slow variable T and on the nutation an-
gle 6 causes the appearance of terms containing the de-

K . .
rivatives B_K and 8_ in the first two equations of sys-

Jat a0
tem (2.4). If the perturbing moments depend on time ¢,
then the method of averaging can hardly be applied, be-
cause the system is essentially nonlinear. Consider a

Vol. 41 No.5 2002
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ments on the slow time T=¢£.

The moments M} are periodic in ¢ with period 2r;
therefore, according to (2.3), the functions M, are 2r-
periodic functions of o and . In this case, system (2.4)
contains two rotating phases o and 7y and the corre-
sponding frequencies 0, = CA™'rand @, = (C—-A)A™'r
are varying and depend on the slow variable r. When
averaging system (2.4), two cases should be distin-
guished: the nonresonance case, namely, when the fre-
quencies ®, and @, are incommensurable (C/A is an
irrational number), and the resonance case, namely,
when these frequencies are commensurable (C/A = ifj,
iff <2, i, j are positive coprime integers). Since the ratio
of the frequencies is constant, @Jw, =1 —AC™, as a
result of introducing the variable™y, the averaging of

onlinear system (2.4) is equivalent to the averaging of
a quasilinear system with constant frequencies.

In the nonresonance case (C/A # ifj), we obtain the
first approximation averaged system by independently
averaging the right-hand sides of system (2.4) with
respect to both fast variables o and y. Making a change
of the argument T = € and dividing both sides of the
equations by €, we obtain

&= & - 120 ' bsineX
90
1 -1

—pK(t,B)Cr cosB+K('t,9)C'2r_zsinBu;,
K

b= A'u,+ uzc‘f’asinea_e-

+aK(1,0)C"'r ' cos®— K(1,0)C"r *sin0yS,

r=C'y, ¥ =K(10)C'r', e =0,
2r2x

2.5)
iy = 4—:(, j j(M‘.’ccsy+ M3siny)dady,
00

'

L
a ok o

Uy = #Jj(msin‘y—Mgcosy)dady,
00

| 2rln
0
= s _[M doudy,
? 4rc2-[ =
00
I 2n2n
s _ 1 0 .
Iy = 4KZJ.JM35madady,
00
2x2n

fi§ = %ﬁ!{mcosmfady,
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where ' denotes the derivative with respectto T (T~ 1,
t~¢h).

In the resonance case, system (2.4) is a single-fre-
quency system. Instead of o, we introduce a slow vari-
able A, namely, a linear combination of phases with
integer coefficients

A=a—i(i—j)"y, iljel, ilj<2, i j>0.(2.6)

Then, Eqgs. (2.4) take the form of a standard system with
a rotating phase vy whose right-hand sides are periodic
in y with period 2| — jjm. We construct the first approxi-
mation system by averaging the right-hand sides of sys-
tem (2.4) over the indicated period of variation of the
argument y. Making the change t = &1, we reduce the
system to the form

a = AF'!.l’l"—lf'ZC'lr-lbsinB%

—bK(1,0)C'r ' cos8 + K(t, 0)Cr *sinBpt’,

b= A'ut+ ll2€-'r"lasin9%

+aK(1,0)C 'r'cos®—K(t,0)C 7 r sinOuie,
r=Cc'uf, v =K(0)C'r,
A = —K(1,0)C ' r ' cos0,

2xli- jl

0 =0,

2.7

uy =_Wl_ﬂ | (Micosy + Misiny)dy,
e
p¥ = m+ﬂ I (M{siny + Mycosy)dy,
=y
T ﬁ | My,
1 2‘“-;
¥ = gy | Masimedr.
e
T m | Micosady

The dependence of the restoring moment on the
slow time T and on the nutation angle 6 caused the.
appearance of a term containing two derivatives in sys-
tem (2.4). However, when averaging this system in
either the nonresonance (2.5) or resonance (2.7) case,

. . oK ) .
the derivative =— vanishes. As a result, we obtain sys-

at
tems containing the restoring moment K(t, 8) and the

i ok
derivative —

30 similar to those of [2]. The only differ-
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enoc:s th,at, in (2.5) and (2.7), the restoring moment
and the derivative of the restoring moment with respect
to the nutation angle depend on the slow time T=¢z.

Below, we investigate some particular cases of per-
turbed motion of a rigid body with the help of the
above-presented methods.

3. EXAMPLES |

3.1. Case of linear dissipation. Let us study the
Lagrange perturbed motion taking into the account the
moments that affect the rigid body from the exterior. A
case in point is an environment with slowly varying
properties of viscosity as a consequence of a change in
density, temperature, and environment composition.
We assume that the perturbing moments are linear dis-
sipative and, with due regard for (1.3), take the form

M, = €1,(0)P, M, = —€1,(1)Q,

M, = —el(T)r.

3.1

Here, [;(t) and I;(1) are positive integrable functions
defined for T ~ 1. Performing 2 number of transforma-
tions, one obtains the solution to the first approximation
averaged system of equations (2.5) for perturbing
moments (3.1) in the form

0 =0, r(t)=ryexp[Fs(t)],

W(T) = Yo+ C‘r{,‘j.rc(r*, 0)exp[—F;(T*)]dt*,
0
a(t) = exp[F(7)]
X [PycosP + Qgsinp — KOC"Irgl sinB,sin(P + @o)].

b(t) = exp[F,(1)] G2)
><[Posin[’)—roos[}+K[,C'liv'gI sin®,cos (B + ¢y)]1,

& 1t
Fy(t) = -A II,(I*)dt*,
(4]

Fy(1) = —C]JIJ(t*)d’r*,
0
B = C'ri' [exp(-F3(1*)]

0

x[!{(t*, 8)cos8, + l/23in9{,g—§]d1*.
Substituting the expressions for a, b, and r from
(3.2) into relations (2.3) and (1.3) for P, @, p, and g, we

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL
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determine the desired variables
p = exp[F(1)][pocos(y —B) — gosin(y—B)
+kyC ' g sinBgsin (Y — B — @) ]
+k(t,8)C 'ry exp[—F3(1)]sin6,sing,
g = exp[Fy()][posin(Y - B) +gocos(Y—P) (3.3)
—koC™'rg' sinBycos(yY — B~ @) ]
+k(r, B)C"ralcxp [-F5(T)]sinB4c0s9,

y = A"r.,(c—A)J’exp[Fj(sf)]dr'.
0

Note some qualitative features of the motion in this
case. By (3.2), the nutation angle 0 is constant. The
absolute value of the axial rotation velocity r exponen-
tially decreases. The values of the slow variables a and
b exponentially vanish (in the case where [, and /; are
separated from zero). The increase in the precession
angle y — y, depends on the product of the integrands
K(t, 8) and r'(1). According to (3.3), the terms of the
projections p and g that are determined by the initial
values ky, po. and g, exponentially decay. At the same
time, the projections p and ¢ contain some terms that
depend on the form of the restoring moment k(t, 8).

In the case where k = const, [, = const, and I35 =
const, expressions (3.2) and (3.3) for r, y, a, b, p,and g
coincide with the corresponding formulas in [1]. The
dependence of the restoring moment on the slow time
resulted in some complications as compared with [1] of
the expressions for the precession angle v, slow vari-
ables a and b, and the equatorial components p and g of
the vector of angular velocity.

As an example of the restoring moment that depends
on the nutation angle and slowly varies with time, con-
sider a rigid body with a spring attached to it at a point
N, whose end L is fixed (see figure) [2]. The body is
acted upon by the gravity force mg and the elastic force
F whose magnitude is proportional to the strain of the
spring F = 8(s — 50)- Here, & is the rigidity coefficient of
the spring and s, is the length of unstrained spring. In
this case, the restoring moment has the form

k(t,0) = eK*(1,9) = €(K(0) +E1),
K(©) = mgl + 8hz[1 — so(h> — 2 — 2hzcos8) 1, (3.4)

ON =5 Ob=» "IN < 3=a@), 0CsL

In system (3.2), the function K*(t, 0) appears in the
equations for the precession angle y and for the argu-
ment [3:

VYo = C'ry K(B) [exp[~Fs(T*)ldT* + £,
0

Vol. 41 No.5 2002



Mechanical model of the “Lagrangian

" with the
restoring moment of forces depending on the nutation angle 6.

T

f1 = EC'r [reexp[-Fy(1) e,
1]
B = C'ry [K(8)cosO, + 1/28h> 2 sysin” 8, (h*

(3:5)

T
+22—2hzcos8,) ]_[exp [—F5(t*)]dt* + f,cosBy.

0

In system (3.3), the second terms of the projections
p and g contain (T, 0); thus, the expression for p has the
«form
g".'-r

p = exp[F,(1)][pocos(y - B) — gosin(Y - B)

+koC 'rg' sinBysin (Y — B — o)) 3.6)
+ k(T, 8)C"'ry' sinBysin@exp[—F3(T)] + f3, -

f, = e£C'ry' sin@,sin@exp[-F3(1)].

One obtains a similar expression for the variable g.

3.2. Control of the equatorial component of the
vector of angular velocity. Consider the problem of
bringing a gyroscope into the state of regular preces-
sion, in particular, into the “sleeping” state. Small con-
trol moments are assumed to have the form

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL
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Lhl
o
F oo
L)
S
<

(P +q*)"
M, = —€2h(’t)(p*2 f::z)"’-'
M; = eu(T), 3.7
p* = p—k(1, 8)C”'r'sinBsing,
g* = q-k(1,8)C"'r" sinBcosQ.

Here, h(t) and wu(t) are given integrable functions
defined for T ~ 1; h(t) > 0. These control laws corre-
spond to the time-optimal suppression of the equatonial
component of the vector of angular velocity [6] (bring-
ing it into the mode of regular precession).

In view of relations (1.3) and (2.3) for p and q,
according to (3.7), the control moments have the form

_ .2, ,.,@cosY + bsiny
M, =€ h(':)————(a2+ bl)"z ,
Y, ‘ (3.8)
ny-— bco
¥ AR o S

Substituting the control moments (3.8) into (2.5)
and performing the integration, we obtain a solution of
the form

0 =8, r(1)= r0+c*‘ja(-c*)dr*,

0

w(t) = yo+ €' [K(T%,0)r7 (1)t
0
a(t) = Fy(1)

X [Pycosy + Qgsin) — KOC_' ralsinBﬂsiﬂ(x + Q)]s
b(x) = Fu(?) &5)

X [Pgsiny — Qgpcosy + KOC'] rglsin Bycos(X + o)l
0

Ft) = 1-A"'(@+ bﬁ)‘”’jh(t*)dﬁ.

0
T

y = C_IJ.{K('{*, 0)cosO, + UZSinBﬂ%g]r_l(‘c*)dt*‘
0

Substituting the expressions for P, O, a, b,and r
from (2.3) and (3.9) into relations (1.3), we determine
the desired values~

Pr= F4(T)[Pu‘-‘05('¥"x}"%Si“(Y*X)
+koC ' rg' sinBysin (Y — % — 9o) ]
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0)C ' (v)sing,sing,
q F4(")[Pom(1 x.)""i’om(T )
gt ro'sin6c0s(Y ~ X ~ 9o)]

(3.10)

+ k(‘t, 8)C ' r'(1)sin8,cos @,

y=AT\(C- A)I:rat+C" ju(t,)d‘t}ﬂ] T=¢t.

Thus, we have obtained the solutions to sy
(2.5), (3.7) in the case of moment (3.8) and found
expressions for the projections of the vector of angular
velocity. The nutation angle 0 is constant. The value
|(7)] increases if the parameter ry has the same sign as
the integral of the function u(t) and decreases, other-
wise. The variables a and b are the products of a factor
that takes positive or negative values or is equal to zero
depending on the integrand %(t) and an oscillating fac-
tor. The increase in the precession angle y — y, is deter-
mined by the integral of the ratio of the restoring
moment to the axial rotation velocity; it is positive in
the case where K(t, 8) has the same sign as r'(T).

According to (3.10), the components p and g of the
vector of angular velocity contain bounded oscillating
terms whose oscillation frequency is determined by the
value ¥ — % and a term determined by the restoring
moment k(T, 0).

_ The function k(T) can be treated as a constraint on
the control action. Such interpretation allows one, for
example, to solve the problem of suppressing the equa-
torial component by means of a bounded moment of
forces, where M, , is a control for p and g and M5 is a
control for r.

3.3. Axisymmetric body entry into the atmo-
sphere. Consider the case where the restoring moment
has the form

k(t,0) = eK*(7,0)
&- €(K(8) + Esinvt) = k*(0) + e&sinvT,
K(0) = A(u + 21 cos0).

Here, p and m are constant coefficients with no con-

straints imposed on their signs. Such problems arise for

uncontrolled spatial motion of a body in the atmosphere
iy

The expressions for the precession angle i, argu-
ment Y, and projections p and g of the vector of angular
velocity take the form

(3.11)

V-Vo = C'K(Bo)[r'(v*)da* +m,,
0

X = C'[K(8p)cos8, + Ansin’6,]
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x Ir“'(t*)dt‘ 41,0058,

P = Fy(t)[pocos(y —%) = gosin(yY—%)

(3.12)
+ k*(eo)C" ral sinBysin(y - —@,)]

+k*(0,)C”'F ' (T)sinB,sing + 1,

N = §C"J'sin\r'r*r"('t*)dt*.
0
N, = eEsinvtC ' r ' (1)sin6,sin@.

One obtains a similar formula for q.

As in [2], expressions (3.12) for p, g, and y contain
terms involving k*(8,). The difference is that they con-
tain additional terms 1, and 1, respectively. Since the
function (1) is bounded, the additional terms are also
bounded and [sinvt]| < |v1].

If the resonance relation C/A = ifj (i <2, i, j are pos-
itive coprime integers) holds, then the system should be
averaged according to scheme (2.9). In the examples
given above, all integrals pff from (2.9) coincide with
the corresponding integrals p, from (2.7). That is why
there is actually no resonance and the obtained solution
is good for describing the motion for any ratio C/A # 1.

CONCLUSIONS

(1) A new class of rotations of a dynamically sym-
metric rigid body about a fixed point with account for a
nonstationary perturbing moment, as well as for a per-
turbing moment that slowly varies with time and
depends on the nutation angle, is studied. This class is
the widest among those known in the literature.

(2) A procedure for averaging the obtained essen-
tially nonlinear two-frequency system is developed in
both the nonresonance and resonance cases.

(3) Particular problems of the dynamics and control
of rotations of a rigid body close to the regular preces-
sion in the Lagrangian case, which are of independent
importance for applications, are solved.
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