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PERTURBED ROTATIONAL MOTIONS OF A RIGID BODY THAT ARE CLOSE
TO REGULAR PRECESSIOH IN THE LAGRANGE CASE

D. D. Leshchenko and A. S. Shamaev

Izv. AN SSSR, Mekhanika Tverdogo Tela,
Vol. 22, No. 6, pp. 8-17, 1987

ubC 531.383

In this paper we investigate perturbed rotational motions of a rigid body that are
close to regular precession in the Lagrange case. It is assumed that the angular velocity
of the body is large and that its direction is close to the axis of dynamic symmetry, and
also that the perturbing moments are small as compared to the restoring ones. A small
varameter 1s introduced in a speclal manner, and the averaging method 1s employed. Aver-
aged systems of equations of motion are obtained in the first and second approximations.
Particular mechanical models of perturbations are considered. -

1. Statement of the problem. Consider moticn of a dynamically symmetrical rigid
bedy about fixed point 0, under the action of restoring and perturbing moments. The
equations of motion (the dynamic and kinematic Euler equations) have the form

Ap™+(C—A) gre=ksin 8 cos p+M,
Aq'+(A=C) pre=—F sin 6 sin g+,
Credy Me=3p, g, 1, 9. 8, ¢, t) (i=1, 2, 3) (3.2
¥'=(p sin g+ cos ) cosec 8, §"==p cos ¢—g sin ¢
@ ==r—(psin g+q cos ) ctg B

Dynamic equations (1.1) are written in the projections onto the principal axes of
inertia of the body, Passing through point 0. Here Ps 9, r are the projections of the

angular velocity vector of the body onto these axes; Mi (1 =1, 2, 3) are the projections

of the vector of the perturbing moment onto these same axes, which are 2w-periodic func-
ticns of the Euler angles ¥, 8, ¢; A and C are the equatorial and axial mements of in-
ertia of the body relative 5o point 0, A # C. It is assumed that the body 1is acted upon

2y & restoring moment, whose maximum value 1s equal to k and which is created by a force,
constant in magnitude and direction, that 1s applied to some fixed point of the axls of
dynamic symmetry. In the case of a heavy top we have k = mgl, where m 1s the mass of the
boyd; g 1s the acceleration due to gravity; and ! is the distance from fixed point © to
the center of gravity of the body.

%ﬁg perturbing moments Mi in (1.1) are assumed %o be known functions of their argu-
ments. *When there are no perturbations (My =0, £ =1, 2, 3),
the Lagrange case. -

= . i

Equations (1.1) can describe the motions of a Lagrange top under perturbations of

various physical origin, as well as the motions of a free rigid body relative to the

center of mass when this body 1is acted upon by a restoring moment due to aerodynamic
forzces, and also by perturbing moments.

Egs. (1.1) correspond to

The following initial assumptions are made:

e, Orak, |Ml<k (i=1, 2, 3) (1.2)

sssumptions (1.2) mean shat the direction of the angular velocity of the body is
the axis of dynamic Symmetry; the angular velocity 1s large enough that the

energy of the body is much greater than the potential energy resulting from the

ring moment; and the perturbing moments are small as compared to the restoring ones.

=%
equalities (1.2) enable us to introduce a small parameter € « 1 and to set
987 by Allarton Press, Inc.
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P=eP, qume(), kmeK

(1.3)
U=e'MP(P,Q,r, 4, 0,0,1) (1=1,23)

Paper [1] also considered motions of a heavy rigid body similar to the Lagrange case.
It was assumed that the body 1s acted upon by small perturbing moments that satisfy cer-
taln additional conditions. Then paper [1] proceeded to average the equations of motion

of dynamic symmetry, and therefore the generating solution is not the trajectory of mo-
tion in the Lagrange case, but rather some simpler solution. As a result, using the

averaging method. in the fipst and second approximations we are able to obtain exact ana-
lytic solutions.

In [2], as 1in this paper, 1t is assumed that the angular velocity is large, and that
its direction is close to the axis of dynamic symmetry of the body. In contrast to the
third inequality in (1.2), 1t was assumed in [2] that two projections of the vector of
the perturbing moment onto the principal axes of inertiaz of the bady are small as compared
to the restoring moment, while the third is of the same crder of magnitude.

The new variables P ang Q, as well as the variables and constants r, g, 9, ¢, K, 4,
C, Mi*’ are assumed to be bounded variables of order unity as € + 0. We pose the problem

of investigating the asymptotlic behavior of system (1.1) for small ¢, if conditions (1.2)
and (1.3) are observed. We will .employ the averaging method [3,4] on a time interval of

-1
order g .

!

We shculd note that the averaging method has heen extensively employed in problems
of rigid-body dynamiecs. In [5,6] the method was used to investigate a variety of prob-
lems in dynamics, chiefly for bodies displaying dynamic symmetry; paper [7] first per-
formed averaging with respect to Euler-Poinsot motion for an asymmetrical body; while
studles [1,2,6,8,9] investigated perturbed motions similar to Lagrange motion. The en-
semble of simplifying assumptions (1.2) or (1.3) enables us to obtain a relatively simple
averaging scheme in the general case, and to investigate a variety of examples.

2. Averaging procedure. We make the change of varliables (1.3) in system (1.1)«
Cancelling ¢ on both sides of the first two equations in (1.1), we obtain
AP +(C—A)Qre=K sin 0 cos oteM®
AQ'+(A~C) Pre—K sin § sin g+eM,*
Crime'M,®, ¢ =z (P sin @+Q cos @)cosec 6
6= (P cos g—Q sin @), @ =r—e(Psin ¢+Q cos P)cigh

Let us first consider the zero-approximation system; we set € = 0 1in (2.1). Then
the last four equations in (2.1) yield

P=Ts ==V, O=B,, Quryt+op, (2.2)

.

e
agére Tgs Yoo GO, ¢0 are constants that are equal to the initial values of the cor-

responding variables for t = g, We substitute (2.2) into the first two equations of Sys=-
tem (2.1) for g = 0, and we integrate the resultant system of two linear equations for

P and 9. The solution can be written as follows:
Pe=a cosy,+bsin y,+KC~'r,~t 8inf, sin (rof+q,)
Q@=asin Y.—b cos 1, +KC~'r,~' sin 8008 (ret+,)
aweP,—KC='r,~* sind, sin Poy b=—Q,+KC~'ry~ 5inb, cos P
Y=ol Re={C=4)A~'ry%0, [nfr,| <1

~
(1]

L]

—

dere I, Qo are the initial values 27 the new variatles P and 9, introduced in zc-

9

cordan

0

2 with (1.3), while the variable Y = YO i1s interpreted as the bhase of the gscil-
lations. System (2.1) 1is essentially nonlinear (the freguency of natural oscillations
of the variables P and Q depends on the slow variable r), and therefore in what follows

we Introduce the additional variable Y, defined by the equation




o e=n, 1(0)=0, n=(C—A)A"'r (2.4)
G ™ n,t in accordance with (2.3). Equations (2.2) and {(2.3)

the general solution of system (2.1), (2.4) for e = 0. By 2liminating the con-

with allowance for (2.2), we can rewrite the first two equations in (2.3) 1n equi-
valent form:

For e = 0 we have y = Y

P=g cos {+bsin y+EC-'r'sinfBsing
Qw=a sin7—b cos 7+KC-"r'sinBecosg (2.5)

We solve (2.5) for a and b:

a=P cos y+Q sin y—KC-'r" sin 8 sin(7+¢} (3.6)

b=Psin 1—Q cos T+EC-'r~' sin 8 cos(1+9) t
We introduce the new variable § as fdlloys 4
r-}.+¢6 (2.7)

Now we return to system (2.1) for e # 0; we will consider (2.5)-(2.7) as change-of-
variable formulas that define the conversion from variables P, Q, r to variables a, b, ©&

(these formulas also include the new variable y). Using these formulas, we change -over

in system (2.1), (2.4) from the variables P, Q, r, ¥, 6, ¢, Y to tne new variables a, b,
6) W, ﬁ: A, Y where

a=1+e "(2.8)

After some manipulations, we obtain a seven-equatlon system (instead of the six-
eguation system (2.1)] that is more convenient for subseqguent investigation:

@' =ed~! (M,* cos y-+M,' sin 1) —eKC~'ry™" cos 8 (b—
—KC-'r,~* sin 0 cos a) +&*KC~"r,~*5 cos 8(b—2KC'r;"* sin 6 cos @) +
R +e'EC'ry M, sinfsina
b med~ (M," sin y—M,' cos 7) +eKC~'r,~" cos 0 (a+
+EC=‘ry~" 5in 0 sin @) —e*KC-'r,~*5 cos 8 (a+
+2KC-'r,~* sin B sin &) —e*KC~*r,"*M,' sinB cos
a'-ec-ilu'.' ( 2 . 9 )
¥ =e cosec 8 (a sin a—b cos a)+eKC'r,~'—e*KC~'r,~*8
) @'=e(acos atbsine)
a’ =mCA=-'r,+eCA'§—e ctg B (asin a—beosa) -
—eKC—'r,~" cos 6+e!RC~*ry*6 cos §
{'=nete(C—A)4-'0

Here the 3-110 dencte functions obtained from Mi* (see (1.3)) as 2 result of substi-
tutide B2.5)~(2.8):

M (a,b, 8,v.0,a,1,)=M*(P,Q,r¢0,09,1) (i=123) (2.10)

It should be pointed out that the changeover from the two variables P, Q to the
three variables a, b, Yy stems from considerations of convenience; for € = 0 the system

for P, @ 1is linear, while change (2.5) is nonsingular for all a, D.

System (2.9) can be brought to the form

z'=eF,(z, y)+e*Fi(z, y), 2(0) =z,

Yo, teg (z, y)+eig(z, y), yt (0)=y* (2,133
¥=agteh (z, y)Fetha(z, y), ¥ (0)=y*

where vector-valued function z=(z%...,2') is comprised of the slow variables a, b, 38, ¥, 8;
here y* and y° denote the fast variables a«, y; and Wys Wp are constant phases, equal

CA-'r, and (C-4)4~'r, respectively. Vector-valued functions Fi g & (i=1, 2) are defined by th
right sides of (2.9).



We denote two-dimensional vector (gl, hl) by Zl. Here and henceforth, we will as-
sume that the perturbing moments Mi‘ are Independent of t. Since Mi* (1 =1, 2, 3) are
2r-periodic in ¢, it follows that, in accordance with change (2.5), (2.6}, (2.8), func-
ttons M, % from (2.10) will be 2r-periodic functions of & and Y.

In accordance with the famlliar procedure of [4] for constructing the asymptotic
form of system (2.11), we will seek a change of variables

z=ztteu, (2%, y*)+etu, (z*, y*)+...
y=ytteni(z*, y*)tetui(z®, y*) ...
v-(lf" F'}- z--(x.":“lz..}| F'-(y’"» y")

such that system (2.11) in the new variables (x*, y*) assumes the form

T e, (2%) Fetds (z*) +. ..

v =ateB (z*) +e'By(z*) +..., a=(0, o) (R-227

For this i1t is necessary to apprepriately chocse functions Uys Uy, Vq, Vv, that de-

fine the change of variables. It is known (4] that the equations for vector-valued func-
tions uy, v, have the form \

© 6, /dy*=F, (z*, y*)—4,(z*) (2.13)
@ aiay*=Z, (%, y*)~B,(z*) i
“nere (9floz) 1s the matrix of partial derivatives laffaz] (i, j=1,...,3). Functions A4,(z*), Bi(z*)
are given by the formulas

is la

ix ix 3 -
)= [ e mamarm, Bien=Z [z magm gy (2.14)

Function u(z* y*) should be the solution of the equation

duy . aF, aF, du, duy : ' _
wﬂa—l’.(x‘. y‘)+a.—m +'5;701 *gd'(l'J—'éFBl (z%)—A4,(z*) (2.15)

Function Ag(_x*l is given by the formula

i r aF, aF, du, 7
-zl ("=‘=;w')+5?“-+$”l-rzr*“-“ = (2.16)
B )dy dg

Let us determine the averaged system of first-approximation equations for the slow

vari ab@s

7% =ed,(z,*), z,* (0) =z,

{2517)
and also the second-approximation systém f‘or-'the slow wvariables
#% =2l (2:°) +8* 44 (22*), 7,° (0) ==z, (2.18)
and the second-approximation system for the fast var‘ilables
nr=ateB(z.0(1), p*(0)=y, y'=(y", ) (2.19)
#nich can be integrated directly:
t
va* (1) -mH—y"!-sf B,(z,*(s))ds (2.20)
.

To investigate the second-approximation system (2.18], 1t 1s convenient to make the



change of independent variable T = et. Then system (2.18) becomes
dz,®/dre=d,(2:*) +eds(z:*) (2.21)
Here the time interval (0, T/e), on which the solutions of the initial system (2,11)

are being considered, becomes the interval (0,T), which is independent of the small param=
eter €. We will seek the solution of system (2.11) in the form

Z3* (1) =z () +ez® (v)+0(s%) (2,299

Substituting expansion (2.22) into (2.21), we obtain the following systems of equa-
tions for vector-valued functions TO(t) =z, (t) (Tmes, imi, 2):

d.:‘"!dr-d.(z“’). z{l)(o) -, ( 2. 23 )
dz/dvmd, (2 (1))2P+A:(z(1)), 2 (0)=0 (2.24)

where Al' 1s the matrix of partial derivatives of the components of vector-valued func-

tions Audz): A(2)=]0A 762", System (2.23) 1is linear, and therefore in a number of cases it
1s simpler to employ it than to investigate system (2.21).

We denote by X(t, c¢) the general solution of the first-approximation system (2.7:

X'=A(X), X(0, ¢)mc=z, . . (2.25)

Then we obtain the following expressions for functions #0(1), 2(1) :

20 (1) =X (3,22), 29 () m O (1) | O (2.) 1 (x0)dx, (2.26)

Here ¢ is the fundamental matrix of the homogeneous equation corresponding to the
second approximation:

O(x) =foX(%, ¢)/Ocfommn n(T)=As(z(7))=ds(X(x, )

We define the vector-valued functions

2,7 () 2 (a) +u2® (1) +em, (2 (e1), y*+utts | B, (0 (o)) ds)

; . (227
¥ (t)=y'+at+e B, (z"(es))ds

Theorem. There exists a set L of measure zero on the (w

w does not belong to L, then Eqs. (2.1

TorMgl scheme for constructing funct
e

egualities

1» Wp) plane such that, if

3) and (2.15) are solvable (and hence the above
lons #"(t), () is meaningful), and we have the in—

lere)—z()[<Ce [y () ~y(t) |<Cie, te[0, Te (2.28)

the constant Cl > 0 being independent of e. The theorem can be proved on the basis of

the standard procedure of change of variables of the averaging method [4], as well as on
the basis of an arithmetic lemma used to estimate the "small denominators" [10] that ap-

pear in constructing solutions of Egs. (2.13) and (2.15) in the form of trigonometric
serfes [4].

Thus, construction of approximate solutions z-(f), ¥°(1) that satisfy bound (2.28) re-
=2 the Tollowing procedure: we use Fourier series to solve Egqs. (2.17) and (2.15);
i8ing formula (2.15), we set up vector-valued functiosn .:1.2(;{*}; then, in zccordance

(2.26), we determine the solutions 1) and 2®(z) of Egs. (2.23) and {2.24): and

2 3
Cinzlly, on the basis of (2.27) we obtain the desired approximations =°(t), p~(t). In what
Tollows, the procedure described will be implemented for some specific systems of equa-
tions of rigid-body dynamics.



The eXxamples of perturbations to be considered below are Such that the Fourier se-

€ right sides of (2.13) and (2.15) contain only a flnite rumber of
terms. Therefore the solvability condition fop Egs. (2.13) ang (2.15) reduces to veri-
fication of a finite number of conditions of the form O myitoumee), T the specirie exam-
ples considered, conditions (2.30) dssume the form CA”n#O.(C—A)A“n#ﬂ, and these condi-
tions are always satisfied in vieyw of the ifnitia] assumptions. Thus, bound (2.23) 15
valid without any additional assumptions regarding the frequencies wgs Wy .

3. Case of a s0lid with a cavity filled with a hfgh—viscosity fluid, As zap example
of our technique, 1let us consider the motion of a rigid body 1in the Lagrange case with

4 symmetrical cavity that 1is filled with a high—viscosity fluid. Then the moments of

the forces acting on the rigid body have the form [11]:

H.-pP..V"‘A“[C(A-C) Pr+i(C—A)r sin 0 sin @+kAp cos 8)
H,-pPuv“A“{C(A—C) g +k(C—A)rsin 8 cos 9tkAqg cos 9] (3.1
My=pP, v 4[4 (C~4 )& +*)r—kA sin 8(p sin ptgcos g)].
where p and vy arpe the density andg kinematic coefficient of viscosity of the fluij; Pll
is the component of the tensor introduced in [11], in the coordinate systeq assoziated
with the body. The tensor depends only on the shape of the cavity, Fii > 0; ip the case

of a Symmetrical cavity under consideration, Pll = P22. In what follows, we wil: dssume
that v~ ~ ¢ (the viscosity of the fluid is high). Making change (1.3) ang discarding
terms of order OCEBJ, Wwe obtain

M. =0Pu &~ (C(A~C) PP+E(C=A)r sin 0 sin o] St i
Hs""pPuA"[CfA—'C}Qf“FK(C—A)PSinem‘ﬂv My*=0 B

The first three €quations of systerm (2.9) can be written in the variables g, By &,
by 8, a, y as follows:

a’ WY ASC(A~C)rtam e RCtr,~ cos 8(5—KC~'r,"* sin 0 cos &)+
+2*KC~'r,~8 cos 8(5—2KC-'r,~* sin 0 cog a) g ~
VPP A=A ~C)r e KO, 008 0(a+EC-ri- i B sin ) (3:3)
—&*'KC='r,~*8 cos 8(a+2KC-*r,~ sin B sin a), §'=0

The remalning equations of system (2.9) are unaffected,

Let us apply the above general scheme fop constructing an approximate soluticn to
The speecific System (3.3). Vector-valueq functions Al and Bl are defined on the czsis

of {(2.14) ang have the form
A={4)  (=T3), B=(z) (j=1,2)
A.‘”—pP..A"C(A—C}r.‘a-—KC"h“b coa §

A;“'—pPuA"C'(A—C)r.‘b-H{C'"r."'c cos 6 (3.=)
A=, AW =KC~'r=t, 4, -=()
G <z 8.“’—6&"6-—36"1'." cos 0, B\ m(C=yg JA=8

¥ L

The fourth ang fifth components of vector-valued function U= {2,} (i, 5} can bes ex-
Dreseed as follows:

Uy Ve (=t 4~ cosec 8(a cos a+b sin a) {
UM e=C='Ar,~(g sin g—P cos ) 3.

wn

Vector-valued function Aa(x*), after appropriate calculations involving formy::z
(2.16), can be written in the form '

Aa(-")-“:w} {f"_‘l:-g)
A =KC'r"'b cos (8~"/,KC-*Ar,*({+cos 8)]
AP e KCtr,=1g con 8(8~'/\KC~'4r,! (1+cos 8) ] 3
e R R 0, A,V

oy




> M =—e],P, M;=—2*1.0, My=—c'lyr, [, >0 (4.1)

Let us define the solution of the averaged system of first-approximation equations
(2.17) with allowance for (3.4) for the slow and fast variables:

a'mexp(st) (a* cos wt—b* sin wt) i
b mmpxp(st) (b* cos wi+a' sin wt)
5 am(), 0 me KC-'ry~ t e 04 =m0, (3.7)
PV mC A b= witpe, 1 =net
s==pP v A-C(A-0) rod, w=eKC'r,~" cos 8.

where s, W, ao, bo, n, are defined in accordance with formula (2.3); ¥, 84, ¢y 2TE con-—
stants that are equal to the 1nitlal values of the Euler angles for ¢ = oy

On the basis of the above formulas, following (2.27), we can set up components of

the function z.” (1) corresponding to variables Y and 8:

(1) —peteKC'ry e KC—Ar,~ cos 8.~
—eC-'Ar,~" cosec 8,(a'" cos a!+b'" sin a") (3.8)
8,7(¢#) =f,+eC='4Ar,~ (2 sin aM=3" cos a'*?)

The resultant formulas can conveniently be written In the form

b (1) o +eKC-'ry-'t+e*tEC—Ar,"" cos B, + R

R =m—gC='Ar,~! cosec B, exp (st) (a®+b*) *sin(a'*+§)
8.7 (¢) =0 +eC*Are~ exp(st) (a*+b")" sin (a'—p)
cos f=sin p=b'"! exp (—st) (a"*+b") e

In expression (3.9) for 87(t) the terms of order ¢ is the product of an exponentially
decreasing (for A& < C) or inereasing (for 4 > C) cofacter exp(st), resulting from the
presence of the cavity with viscous fluid, and an oscillating cofactor sin{e@—p). The

magnitude of the attenuation decrement and the behavior of the slow phas

) e change of small
sseillations are directly evident Prom formulas (3.7) for e, at,

Note that in expression (3.9) for the variable %~°(t) the term R"(e #) 1s of order 0O(g)
on the time interval (0, Te-'). Tnhe expression for the angular precession velocity” w,=KC~'r

is well known from approxlimate gyroscope theory [12]. The term R (e, f) that has been ob-
tained refines this formula for the problen under consideration.

4, Case of linear external dissipative moments. Let us considér perturbed Lagrangs
motion with allowance for the moments acting on the rigid body from the surrounding en-

viponment. We will assume that the perturting moments Mi (1 =1, 2, 3), with allowance
for (1.3), have the form o e

W
where I1 and 13 are constant proportionallty factors that depend on the propertiles of
the medium and the shape of the body. :

The first three equations of (2.9) for the problem in the variables a, b, &, ¥, O,
a, Y assume the form

g m—e A=, (a+KC='r,"" sin 8 sin a)—eKC='ry"" cos 8(b—
—EC-'r,~ sin 8 cos @) +e*4~'] KC-'r,"*8 sin 0 sin a+
+¢*KC~'r,~8 cos 8(b—2KC'r,"! sin 8 cos a)—e*KC-*r, 'l sinfsina b i
pm—ed [ (b—KC-'ry"" sin 0 cos @)+eKC~'r,~" cos 8(at+ (4,2
+RC~'r,~" sin 0 sin a)—e*4~[,KC~'r,*8 sin @ cos a—

—e*KC-'ry6 cos 8(a+2KC"ry"" sin 9 sin a)+
+g*KC™*r,~I, 3in B cos &, § ——eC [ire—e’C' 1,8

The remaining eguations of system (2.9) are unaltered.

We will employ the averaging procedure described in § 2 to set up an approximate
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> M =—e],P, M;=—2*1.0, My=—c'lyr, [, >0 (4.1)

Let us define the solution of the averaged system of first-approximation equations
(2.17) with allowance for (3.4) for the slow and fast variables:

a'mexp(st) (a* cos wt—b* sin wt) i
b mmpxp(st) (b* cos wi+a' sin wt)
5 am(), 0 me KC-'ry~ t e 04 =m0, (3.7)
PV mC A b= witpe, 1 =net
s==pP v A-C(A-0) rod, w=eKC'r,~" cos 8.
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On the basis of the above formulas, following (2.27), we can set up components of

the function z.” (1) corresponding to variables Y and 8:

(1) —peteKC'ry e KC—Ar,~ cos 8.~
—eC-'Ar,~" cosec 8,(a'" cos a!+b'" sin a") (3.8)
8,7(¢#) =f,+eC='4Ar,~ (2 sin aM=3" cos a'*?)

The resultant formulas can conveniently be written In the form

b (1) o +eKC-'ry-'t+e*tEC—Ar,"" cos B, + R

R =m—gC='Ar,~! cosec B, exp (st) (a®+b*) *sin(a'*+§)
8.7 (¢) =0 +eC*Are~ exp(st) (a*+b")" sin (a'—p)
cos f=sin p=b'"! exp (—st) (a"*+b") e
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tained refines this formula for the problen under consideration.

4, Case of linear external dissipative moments. Let us considér perturbed Lagrangs
motion with allowance for the moments acting on the rigid body from the surrounding en-
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The remaining eguations of system (2.9) are unaltered.

We will employ the averaging procedure described in § 2 to set up an approximate
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solution of system (4.2). Vector-valued function Bl 1s defined by (3.4), while the com-
ponents of vector-valued function Al, after calculations based on formulas (2.14), can
be written as follows:

AN m—A4=],a—KC~'rs"'b cos 8, AW AL b+EC 'y a cos B

‘ = (4.3)
A= CLire, A=KC-'1", A =0

The fourth and fifth components of vector-valued function uy can be expressed in
accordance with (3.5).

We should note that in this section and the preceding one, as follows from (2.9),
(3.3), and (4.2), combinations of the form (M," cos y+M,'sinv) and (M, siny—M,"cosy) are lnde-
pendent of y and the right sides of these equations depend only on the single fast vari-
2ble a. This fact is analogous to the sufficient conditions, obtained in [1], for the
possibility of averaging the equations of motion only with respect to the angle of nu-
cation. As a result, the solution of Eqs. (2.13) becomes simpler.

We define functlon Aa(x*) in accordance with formula (2.16):

A= KC-'r,[8b cos 8—'/,KC-*r, "' Ab(3 cos® 8—1) —1iC~"a cos 8]
4, = —KCtr,="[8a co8 8—"/,KC-riAa(3 cos* 6—1) +1.C~b cos €]
A O3, A =KLy (—0+EC e c0s 8)
Ay V=] EC-r"?5in B

& B )

The solution of the averaged system of first-approximation equations (2.17) with
2llowance for (4.3) for the slow and fast variables has the form 4

.

&'V =exp(—edA™1,t) (@’ cos wt—b’ sin wt)
b mexp (—eA='1t) (b* cos wt+a® sin wt)
g C-'Tyred, $ =e KC'rs~ 1y, 8 =B, (4.5)
| g mCA=trd—wt— et A L 0
1O m=nit—")e*(C—4) A~ C !

where, as in (3.7), w=eKC-'r,~ cas B,; the quantities ao, bo, n, are defined in accordance
with (2.3); and L E!'O, ¢, are constants that are equal to the initial values of the

Euler angles for t = 0. Comparison of the resultant expressions for the slow variables
ot pn, &0 ¢, e | with allowance for (2.7), and the corresponding formulas of [2], if
wa formally set I3 = eI3 in them, indicates that the expressions in question coincide.

9n the basis of (2.27) and formulas (3.5), (4.4), and (L.5) we can determine the
components of function z.°(t) corresponding to variables ¥ and 8:
. (2) =+ eRC'r't+e R C='r~ cos 8.+
+1,8*RC=21 .y~ 8 —eC~" Ar,™* cosec 6,(a'"! cos a5 sin &™) (4.6)

& 0,” (£)=0,+e't] KC~*r,~ sin By+eC~'Ar, "' (a" sin a'—b" cos a''?)

The*fesultant expressions can be written as follows:

o (8) ==yt e KC='ry S
S met K*C-%r,~" cos 8.+ KC-r [ it*—
—el='Ar," cosec B, exp(—ed~'I;t) (a"*—b")" sin(a'+0) (1.7)
9-'(3)—0.+t'tI.KC"r." sin B.+ :
+eC-tAr* exp(—eA~1it) (a™+6™)* sin(a"—A)

cos ge=sin A=b'" exp(ed—It) (a™+b") "

n expression (4.7) for &° the term of order e is the product of the slowly expo-
1y decreasing cofactor exp(—eA™'[t), due to energy dissipation, and the oscillating

zotar sin(a®-A). The magnituds of the attenuation decrement and the behavior of the

wil

ohase change of small oscillations are evident from formulas (4.5) for &%, a'.

gt

In expression (4.7) for the variable %-() the terms S¥(s, 1) are of order 0(e) on the
time interval (0, Ts™').



For the problem in question, the resultant expression for St(e, t) refines the formula
for the angular precession veloclty wp,=KC-'rs~* that obtains in approximate gyroscope theory.

5. Case of small constant moment., Consider motion of a rigid body in the Lagrange
case under the action of a moment that 1s constant in the associated axes. In this case
the perturbing moments Mi (1 = 1, 2, 3) have the fOrm MmsM*=eM=const, In setting up the

approximate solution of system (2.9), with allowance for the expression for Mi’ we employ
the averaging procedure cited in § 2. Vector-valued function By 15 defined in accordance

with (3.4), while vector-valued functicn ﬁl, abtained in accordance with (2.14), has the
following components:

AV m—KC-'ry~tb cos B, A BV EC=1ry=1a co8 B

(5.1
AMmC-M,  AO=ECirt,  Ad=0

The fourth and fifth components of vector-valued functlon uq have the form (3.5).
Function Az(x*) i{s determined from formula {(2.16):

Ay mECtry=1b{cos §—1/XL-34ry~ (3 cost 6-1)]
Ay3r - KC-tr~te[8 con @—t/sKC-4Are=(3 cost 8—1)] (5.2)
a0, AV em—EC—tr~t8+EC=Art o8 8 i
FRUNS

et us obtaln a solution for the averaged system of first-apprgximatioq equations
(2.17) with allowance for (5.1) for the slow and fast variables: %

2{} =g cos wi—b° sin we
Bt hemb® con wi+4* sin wt
Bmel=tM, D meHC-irTitige  81=0y (5.3)
al VG A= et~ Wt 41 /3et A= Myt 00
et /383 (C-A) 1AM

whepe w=eXC-'ry~tcosly; Che quantities ao, bo, n, are defined in accordance wilth (2.3); and
by BG’ $q are the initial values of the Euler angles for t = C.

Note that the solution of the averaged first-approximation system (5.3) contalns
only the component of the constant moment (in the sssociated axes) that 1is applied along

the axls of symmetry: MB*. The projections Ml*, ME* of the perturbing-moment vector

drop out upon averaging. Comparison of our expressions (5.3) with the slow variables
with aliowance for (2.7) and the corresponding formulas of [2], formally’setting JTRCRES "
in them, indicates that the expressions for ats), bio, B1), i1, B coincide. The components of
=-(ty corresponding to the variables ¢ and 6 can be determined in accordance with (2.27)
«ith substitution of the corresponding expressions of {3.5), (5.2)s and (5332

&

ik

o~ (£) =t eKC iy~ + K- Ary~" cos By
o 1/, EC—tM, %y~ 33 =eC ' Ary~" cosec Be(all) con et + 51 sinath), 8;()=
: -e.q-.c-i‘lr.-l(‘u) sin et =41 cos i)

(-

The resultant expressions can pe conveniently written in the form e

9o (6) =pe oKL tr -t + VIV
VUi KRC~SAry™ co8 Be—1/16°KC Mo re=t"~
—eC="Ary—1 (a¥ 4+ b9} sin(al'? +x)
B, (t) = BeteC—tAry (a4+5%) % sin(a't—x)
co8 kmsin x=b(1)(a%+ b%7) =

, in the expression for 6« the pounded oscillating term sontains nonzerc initizal

{9
jzta g s b . As in the preceding examples, the resultant term V“) supplements the &i-
cression for the angular precession velocity w,=AC-'n~t that i{s known from approximate
gyroscope theory.

Note that, if we confine ourselves to eonstructing the first approximation, then

14



the formulas for the nutation and precession angles do not contaln parameters of the
perturbing moments, and therefore the effect of perturbations on regular precession of
ths body will not be taken into account. 1In this case, therefore, construction of the
second approximation is essential.

The authors wish to thank F. L. Chernous'ko and L. D. Akulenko for posing the prob-
lem and for useful discussions.
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