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ROTATIONS OF A RIGID BODY UNDER THE ACTION OF
UNSTEADY RESTORING AND PERTURBATION TORQUES

L. D. Akulenko, T. A. Kozachenko, and D. D. Leshchenko

(Received 20 June 2001)

Perturbed rotations of a rigid body close to Lagrange’s regular precession are investigated in the case
where the body is acted upon by a restoring and perturbation torques slowly varying in time. The body is
assumed to be spun up to a high angular velocity and the restoring and perturbation torques are assumed to be
small, with a certain hierarchy of smallness of the components. An averaged first-approximation system of
equations of motion is obtained for the essentially nonlinear system under consideration in non-resonant and
resonant cases. Examples of motion of the body are considered for specific cases of restoring, perturbation,
and control torques.

1. STATEMENT OF THE PROBLEM

Consider the motion of a dynamically symmetric rigid body about a fixed point O under the action of a restoring

“and perturbation torques depending on the slow time r = &, where ¢ is time and ¢ is a small parameter (¢ < 1). The

equations of motion have the form

Ap+(C—A)gr = k(r)sinfcosp+ My, A¢+(A—C)pr =—k(r)sinfsinp+ M,, Cr= M,
1 = (psin g+ g cos w)cosech, O=pcosp—q sing, Y=r—(psing+gcosy)cotd,
Mﬂ = Afi(P: q. 7, T_»'f): 6: &, T)_'I T=et (l = la 21 3)7

where p, g, and r are the projections of the angular velocity of the body onto the principal axes of inertia passing
through the point O, M; are the projections of the perturbation torques onto these axes, and A and C' are, respectively,
the axial and equatorial moments of inertia of the body at the point O (A # C). The torques M; depend on the slow
time T and are 2r-periodic functions of the Eulerian angles 1, @, and 6. We assume that the body is acted upon also
by a restoring torque depending on the slow time, k(7). If the perturbation torque is zero, M; = 0, and the restoring
torque is time-independent, k(7) = const, the equations of (1.1) correspond to Lagrange’s case.

We assume the following conditions to hold:

pPrE«r, Cri>k, Mg, <k M~Ek. (1.2)

The relations of (1.2) imply that (i) the direction of the angular velocity is close to that of the symmetry axis of the
body, (ii) the projection of the angular velocity of the body onto the symmetry axis is large enough, so that the kinetic
energy of the body is much greater than the potential energy due to the restoring torque, and (iii) two projections of
the perturbation torque onto the principal axes of inertia of the body are small as compared with the restoring torque,
while the third projection coincides with the restoring torque in order of magnitude,

The inequalities of (1.2) allow one to introduce the following relations:

p=cP, g¢g=eQ, k(r)=cK(r), 7=¢t,

13
Mz = EM{5(P,Q,r,4,0,0,7), M =eM3(P,Q,7,9,6,0,7). ¢4
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Previously, fast rotations of a rigid body close to Lagrange’s case have been considered for the restoring torque -
constant in magnitude, k = const [1], and for the restoring torque depending on the nutation angle, k£ = k() [2]. The
influence of the perturbation torque accounted for by the resistance of the medium and the perturbation torque constant
in the body-attached reference frame have been analyzed.

In the present paper, we investigate the motion of a rigid body under the action of the perturbation and restormg
torques depending on the slow time 7, i.e., k = k(), M; = Mi(p,q,7,%,8, p, 7). The new variables P and (), as well
as the variables 7, v, §, and , the functions K and M (I = 1,2,3), and the parameters A and C' are assumed to be
bounded quantities having an order of unity ase — 0.

We will investigate the asymptotic behavior of system (1.1) with small £ on the time interval of the order of ¢!,
provided that the conditions of (1.2) and (1.3) are satisfied. For this investigation, we will utilize the method of
averaging [3, 4]. The method of averaging has been widely utilized when solving problems of dynamics of a rigid
body. The simplifying assumptions of (1.2) or (1.3) enable one to obtain a fairly simple averaging scheme in the
general case and solve a number of example problems.

2. CONSTRUCTION OF THE AVERAGED EQUATIONS OF MOTION

We subject system (1.2) to the change of variables in accordance with (1.3). Then we cancel € in both sides of
the first two equations of (1.1) to obtain

AP+ (C-A)Qr=K(r)sinfcosp+eM*, AQ+(A—C)Pr=—K(r)sinfsinp+eMy, Cr=cM;,

; ; " (2.1)
Y =¢e(Psinp+ Qcosp)cosect, & =r—e(Psing+cosyp)cotd, &=c(Pcgse—Qsing).

According to the terminology of [3, 4], system (2.1) is a two-frequency essentially nonlinear system.
Consider first the first-approximation system obtained by setting £ = 0 in (2.1). From the last four equations we
find

r=ro, $=wo, 0=0p, @=rot+ps, K=K(r), T=const, (2.2)

where 1, (o, g, @o are constants equal to the values of the respective variables at t = 0. Substitute the relations of (2.2)
into the first two equations of (2.1) with € = 0 and then integrate the resulting system of linear equations for P and ()
to obtain

K ; K
P=acosy+bsiny+ C—sinﬂsin:,u, Q=a51n'y—bcosry+z_—sm9c:03tp, (2.3)
T T

K o K
fL:P—asmﬁsma, b:—Q+EsmEcosa,

—A
A

where a and b are osculating (Van der Pol type) variables introduced instead of those of (1.3) and -y plays the role of
the phase of oscillations.

We will utilize system (2.1) with € = 0 and the relations of (2.3) as relations (containing the variable ) that define
a single-valued transformation between the variables (P, ()) and (a, b). Using these relations, we proceed from the
variables (P, ), 7,1, 8, @, 7) to the variables (a, b, 7,1, 8, &, 7, 7). Note that the phases ¢, a, and ~ are connected by a
finite relation which turns out to be more convenient for the further analysis of the standard system with two rotating
phases v and «. After appropriate transformation we obtain the system

C
y=n, (0)=0, n= 1251, ez,
T

a= -%(M? cosy + MY siny) + EC £lr) MJsinfsina— EfégT) cosf -b— {g:) sinfl cos a
K ;
- Eﬂ sinf cos a,
eK [ K ]
b= —(M'O siny— MY cos ) — el M?sinf cosa + (@) cosf|a+ ) sin#sina
C’2 ? Cr Cr
- (2.4)
eK'(1) . ’
+ Or sin @ sin a,
r= EM;", 6 =¢e(acosa+ bsina), 1,15 =g(asina—bcosa)cosecd + &g(ﬂ ;
=
c ) K —
0= -:L-l—r-—e(a sina—bcos o) cotf— EC—E*T) cosd, = —%q—r,
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M{(a,b,7,3,0,a,v,7)= M} (P,Q,r,1.6, 0, 7) (i=1,23),

which is more convenient for the subsequent investigation.

Note that if K = const and M do not depend on ¢, system (2.4) coincides with the respective system of [1].

Let us investigate the possibility of the method of averaging to be applied to system (2.4). This system contains
slow variables, a, b, r, %, 8, and T, and fast variables (phases), a and . The restoring torque in system (2.4) depends on
the slow variable 7, which leads to the appearance of terms containing the derivative e K'(7) in the first two equations.
If the perturbation torques depend on time ¢, then the system is essential ly nonlinear and the application of the averaging
method is rather complicated. We will consider a simpler case where the perturbation torques depend on the slow time
TSl

The torques M}" are 27-periodic in i and, therefore, the M} are 2m-periodic functions of a and <. In this case,
system (2.4) has two rotating phases, o and v, and the frequencies w, = CA~'r and wy =(C'—A)A 'r corresponding
to these phases depend on the slow variable. When averagin g system (2.4), one should distinguish between the non-
resonant case, where the frequencies w, and w- are incommensurable (C/ 4 is an irrational number), and the resonant
case, where these frequencies are commensurable (C/A = i/7,4/7 <2, i and j are coprime positive integers). Since
the frequency ratio is constant, w, /w, = 1 — AC, introducing the variable v makes the averaging of system (2.4)
equivalent to the averaging of a quasi-linear system with constant frequencies.

In the non-resonant case (C'/A # i/5), one can obtain the first-approximation averaged system by averaging the
right-hand sides of (2.4) independently with respect to both of the fast variables o and 7- Then we perform the change
of variables T = ¢t (£ < 1; ¢ is time) and cancel £ in both sides of the resulting equations to obtain’ .

_ o bK(7) Elx) . ; o aK(7) K(r) .
ar__X_ = cos(}+c—2-r2-sm9,u§, bf_,_;r%-—c}——cosﬂk Foere) sin @ 5, -
et KOyl
1 27 27 1 2w pl2w
= EF/G /0 (M} cos v+ M]sin)dady, = ﬁ/[} ! (.M;j siny— M2 cos v) da dy,
1 2 plw
S MY dad
H3 Tl /{; /{; 3 daedy,
1 2w pdo 1 2w p2m d()
W= peay | /0. MY sin o dex dy, ps = yroy i /U M7 cos o da dry, ()= e

In the resonant case, system (2.4) is single-frequency. Instead of @, we introduce a slow variable )\ defined as a
linear combination of the phases with integer coefficients,
A=a— J 5 t.'=|&1 1“<2 i,7>0 (2.6)
zfj » j » j g 2 3 % . M

Then the system takes a standard form with the rotating phase -y of which the right-hand sides of the resulting system are
2li—j|w-periodic functions. To construct the first-approximation system we average the right-hand sides of system (2.4)
with respect to y over the aforementioned period. The change of variables 7 = et reduces the system to the form

i WK K(r)y . X ;
a'= %— ——CEFT) cosf + CE( 2) sinf u3®, b= ‘MTZ + ———ng) cosf ~ ——gg;) cos § 3¢,
B KO K@) e

Y = =0, MN=-— coséd,

e Cr’

Cr

+ 1 s 0 0
T e M cosy + M; sin~y) d-, "
Hy 2?r['i-j|/g (M, f 2 Ndy,

2r]ig]

= (M} sin ~ MY cos ) dv,
2rli—j] Jo PRBTS R

1 2m|i—j| ; 1 2r|i—j| ,
3= ————— M3 dy, '5=—‘—,—-/. M5 sin c dry,
Hy 27l | /ﬂ 3 &Y, iy 2nfi—j] /o Hy 2
i 1 -2 [i—j] 5
,(L;L = m /ﬂ 1'1’13 COS x d’}’.

As has been mentioned, the dependence of the restoring torque on the slow time 7 leads to the appearance of an
additional term in system (2.4), However, this term disappears after averaging system (2.4), both in the non-resonant
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and resonant cases. As a result, we obtain systems similar to those of [1, 2], with the only difference that the restoring
torque in the relations of (2.5) and (2.7) depends on the slow time, i.e., we have K = K(7).
In what follows, we apply the described technique to specific cases of perturbed motion of a rigid body.

3. EXAMPLES

3.1. Linear dissipation. We will investigate the perturbed motion of Lagrange’s top, with torques applied to the
body by the environment being taken into account. This is the case, for example, for a medium the viscous properties
of which slowly change due to changes in the density, temperature, and composition of the medium. We assume that
the perturbation torques are linearly dissipative and, with reference to (1.3), have the form

My =-€L(NP, My=—*I(1Q, M;=—ely(r)r, G.1)

where I)(7) and I(7) are positive integrable functions defined on an interval 7 ~ 1. After a number of transformations,
the solution of the first-approximation averaged system (2.5) for the perturbation torques of (3.1) can be represented as

6=0o, ()= roexplFy(D)), () = o + O—lo- | KGemptrsrnar,
0
a(T) = exp[Fi(1)] [Pg cos B+ Qysin 3~ é% sin @ sin(3 + :pu}} ] (3.2)
[i] X

Fysin8—Qpcos3+ *("7_;0_ sin fp cos(3 + (po)] ¥
0

(I} /ﬂ. L") dr?,

b(7) = exp[Fi(7)]

Fir)=— /0 L") dr, Fyr)=-—

B=

1 °°59°/ K@) expl-F(r)]dr* = (h—1)0) cos b
C?‘g 0

By substituting the expressions of (3.2) for a, b, and r into the expressions of (2.1) and (1.3) for P, Q, p, and q we
determine the desired variables

p=exp[Fi(m)] {p{) cos(y— 8)—qp sin(y— 3) + C!'t: sinfy sin(y— 3 —Lpu}} g ]g:) exp[-F3(7)] sin Ay sin ¢,
0 0
_ (33)
g = exp[Fi(1)] {po sin(y — 3) + go cos(y — ) — ;O sin By cos(y— 3 — {pg)] + A7) exp[—F3(7)] sin By cos ¢,
To Cro

3 i
= n(C=4) / exp[F(et™)] dt*.
A 0

Note some qualitative features of this motion. According to (3.2), the nutation angle # is constant, The magnitude
of the axial angular velocity, r, monotonically (exponentially) decreases. In case the variables I; and I, are isolated
from zero, the magnitudes of the slow variables a and b exponentially approach zero. The increment of the precession
angle, ¢ — )y, depend on the product of the integrands K(7) and r7!(). The variable changes in a similar manner,
provided that fy # £ /2, and has a meaning of the oscillation phase. According to (3.3), the terms in the expressions
for p and ¢ accounted for by the initial values ko, po, and o, exponentially decay. At the same time, these expressions
involve also terms depending on the form of the restoring torque k(7).

If k = const, I; = const, and I5 = const, the expressions of (3.2) and (3.3) for r, 4, a, b, p, and ¢ coincide with the
respective relations of [1]. The dependence of the restoring torque on the slow time complicates the expressions for
the precession angle, 1), slow variables a and b, and the equatorial components of the angular velocity, p and g.

Consider a particular case where the restoring torque slowly changes in time and has the form

k() =eK(T)=e(Ko+agr) = ko + EQqT, ap# 0, ag=const. 3.4

In system (3.2), the function K'(7) occurs in the equation for the precession angle, 1, and in the expression for 3;
we have

K T 7 i
h—iby = C—?"OD/;J. exp[~Fi(t")]ldr* + fi, fi= %/ 7" exp[—F5 ()] dr¥, B={—10)cosby. (3.5)
0
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In system (3.3), the expressions for p and g contain &(r) in the second term; for p we have

kq
= eXDLFL(r)] o costy— )~ gusincy ) + 2 sinu sinty )
+ 20 Gin gy sin pexpl=Fy ()] + £, (3.6)
GT‘U

h= 007 sin By sin w exp[—F3(7)].
O?"[)

The expression for ¢ has a similar form.

Note that the expressions of (3.5) and (3.6) for p, ¢, and ¢ contain an exponentially increasing term involving
the constant Ky, as is the case for the respective expressions of [1]. The difference is that the expressions of (3.5)
and (3.6) involve additional terms, f; and f;, respectively. The absolute value, |fi|, of the additional term for the
precession angle exponentially increases; the function f; is positive, equal to zero, and negative for g > 0, ag = 0, and
ag <0, respectively. In the expressions for p and g, the function f; has the form of a secular term” The case of ag=0
corresponds to &£ = const.

Let us briefly investigate the system of (2.5) in the case where

k(1) =eK(1) =e(Ky+ agsinvr), ap #= 0. (3.7

In the expressions of (3.2) and (3.3), the torque K(7) occurs in the expressions for the precessmn angle, 1), the
argument 3, and the projections of the angular velocity, p and ¢; for v and p, we have, .

h—1y = —f exp[—F3(r")] dr* + fa,
(3.8)
exp[—F5(T)] sin by sin o + f4,

ko . : k
p = exp[F1(7)]|po cos(y— ) —qo cos(y— 3) + =2 sin B sin(y— 3 —pg)| + !
Cro CT{)

f=

T -
g:o [J sinvr* exp[-F5(77)]dr", fi= % sin & sin f; sin ¢,
The expression for ¢ is similar to the expression of (3.8) for p.

Compare the expressions of (3.8) for p and 7 with the respective expressions of (3.5) and (3.6). A difference is
observed only in the structure of the additional terms f; (i = 1,2,3,4). For ag = 0 (or/and v = 0), the functions f3
and f4 vanish and the results correspond to the case of k = const.

3.2. Control of the equatorial component of the angular velocity. Consider the problem of bringing the top to the
state of regular precession, in particular to the “sleeping" state. The small control torques are assumed to have the form

p* x

Mi=—h(r)———, My=—€h(r)———, M;=cu(r), 3.9
1 =—€"W(7) o s ==ethlr) o 3= gu(r) (3.9)
S G W o W
) pr=p— o sinflsing, ¢*=¢-— o sin f cos ¢,

where h(7) and u(r) are prescribed integrable functions on an interval 7 ~ 1; h(7) > 0, 7 ~ 1. These control laws
correspond to the time-optimal deceleration of the equatorial component of the angular velocity [5].

In accordance with (3.9), with reference to the expressions of (1.3) and (2.3) for p and g, the perturbation torques
can be represented as follows:

acosy +bsiny asiny—bcosy
Val+2 Va2 +p2

Substitute (3.10) into (2.7) and then integrate the resulting equations to obtain the solution in the form

K(r~ )

() ¢

a(T) = Fy(T) {Po cosy + (o siny— O_’fuo sinfy sin(y + (,00)} ; (3.11)

My =—2h(r) M, =—€*h(r) M; = eu(T). (3.10)

6 = by, T‘(T)—?”o‘f—f u(r*)dr*, (T)_%+C/

b(r) = Fu(1) [Po sin y — Qo cosy + %9- sin g cos(y + gog)} g
Ty
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_ cosbo 7 K(r*) P

[1 1 /Th(r*)d*]
—_—— |, —_— ;
AVRE+8 Jo X7 )y v

F4(T) =

By substituting the expressions of (2.3) and (3.11) for P, Q, a, b, and r into the relations of (1.3) we determine
the desired quantities

k
P = Fa(1) | po cos(y —x) —qo sin(y — x) + k—o sin g sin(y—x —pg) | + ) sin # sin ¢,
Cry Cr(r)
" k() (3.12)
q = Fy(1) {po sin(y—x) + qo cos(y —y) — ﬂCTOo sin fp cos(y—x — Lpo)} + Cr(z-'r) sin 6 cosp,

C—A i P k
y= T {r0t+5/0(f0 u(n)dn)dr], T=Ect

Thus we have obtained the solution of the system of (2.7) and (3.9) and have found expressions for the projections of
the angular velocity in the case of the torque defined by (3.10). The nutation angle # is constant. The quantity |r(7)|
increases if the parameter ro and the integral of the function u(7) coincide in sign and decreases otherwise, The
variables @ and b are expressed as the product of a multiplier that assumes positive, negative, or zero values, depending
on the integrand h(7), by an oscillating multiplier. From (3.11) it follows that for h(T) = hy > 0, there exists

A/ af) + bg

hy

K

T ST =

such that a(r.) = b(r.) = 0. If K(r) = K, and 7(7) = r, for 7 2 7., then the top performs a regular precession; in
particular, it is “sleeping” for #; = 0 or 6y = 7. The increment of the precession angle, 1 — 1)y, depends on the integral
of the quotient of the restoring torque by the axial component of the angular velocity. This integral is positive if K ()
and r!(7) coincide in sign.

In accordance with (3.12), the components p and g of the angular velocity contain bounded oscillating terms,
as well as a term determined by the restoring torque k(7); the frequency of the oscillating terms depends on the
variable v — .

The function h(r) can be interpreted as a constraint on the control function, for example, in the problem of the
deceleration of the equatorial component of the angular velocity by means of a constrained torque. In this case, M, M>,
and Mj are control functions for the variables p, g, and r, respectively.

Consider the case where the restoring torque has the form

k() =eK(r)=e(Ko + apr) = ko + eagT, ap =0, (3.13)

In this case, the precession angle, v, and the component p of the angular velocity are expressed as follows:

PO T odrr
Ww—1g = Kol . W +m,
. . ko . : ko . ; (el
p=Fy(r) [po cos(y—x) — gosin{y—x) + Crg S fosin(y—x— Lpo)] t fo sinp +1p,
a T % gapT ;
= a A _r'(r“) dr*, m= —_C?“‘(T} sinfg sin .

The expression for the component g of the angular velocity is similar to that of (3.14) for the component p.

As was the case in [1], the expressions of (3.14) for p, ¢, and 1 involve terms that contain the constant ko. However,
unlike the expressions of [1], the expression of (3.14) for ¢ contains an additional term m and the expressions for p
and q contain an additional term 1.

Consider briefly the case where the restoring torque has the form

k(1) = eK(r) = e(Ky+ agsinvr), ag # 0. (3.15)
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In this case, for vy and p, we have the expressions

‘ _ Ko [T dr*
Y=g = 7/0 ) +,

(3.16)
) ko . , k ) .

p=Fu(r) [po cos(y —x) —qosin(y—x) + C—:o sin g sin(y —x — o) | + *C-TE—T) sin o sin g + 74,
_ag 7 sinvT”
"IT Sy T

* > (o)) ; 1 3
", ms = ———sinvTsinfysinyp.
Cr(r)

The expression for g is similar to that of (3.16) for p.
The difference between the cases of (3.13) and (3.15) is in additional terms 7y, 7, 713, and 1. Since | sin v < |vT],
we have |v3| < |vy| and |vy| < ||, Therefore, since the function r(7) is bounded, the additional terms are also bounded.
If the resonant relation holds, i.c., C/A =i/, where i/j =< 2, while 7 and j are positive coprime integers, one
should utilize the scheme of (2.7) when averaging. In the previous examples, all integrals 4 of (2.7) coincide with
the respective integrals p; of (2.5). Therefore, in fact, there is no resonance and, hence, the obtained solution can be
applied to describe the motion for any C'/A = 1 (C £ 24).

4. CONCLUSIONS

1. A new class of rotations of a dynamically symmetric rigid body about a fixed point has been investigated with
unsteady restoring and perturbation torques being taken into account. o

2. An averaging procedure has been developed for the resulting essentially nonlinear system both in non-resonant
and resonant cases.

3. A number of specific problems of dynamics and control of rotation of a rigid body have been solved. The
motions that have been considered are close to the regular precession in Lagrange’s case. The obtained solutions have
an independent value for applications.
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