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Problems of Evolution of Rotations of a Rigid Body
under the Action of Perturbing Moments

L. AKULENKO
Institute for Problems in Mechanics of the Russian Academy of Sciences,
Prospekt Vernadskogo 101, 117526 Moscow, Russia

D. LESHCHENKO, T. KUSHPIL and I. TIMOSHENKO
Academy of Civil Engineering and Architecture, Didrikhson Street 4, 65029 Odessa, Ukraine

Abstract. The rotatory motion of a nearly dynamically spherical rigid body, which contains a
viscoelastic element, is considered. This element is simulated by a moving mass, connected by a
spring and damper to the point, situated on one of a principal axis of inertia. The small parameters
caused by the proximity of moments of inertia and the presence of moving mass are considered to
be of the same order. The spherical coordinates defining the position of the angular velocity vector
are introduced. The system of differential equations is obtained and investigated, the special cases of
motion are considered. The authors investigate perturbed rotational motions of a rigid body, similar to
the regular precession in the Lagrange case, under the action of the moment that is slowly changing in
time and the restoring moment depending on the angle of nutation. In two problems it is assumed that
the angular velocity of the body is large and its direction is close to the axes of dynamic symmetry.
In the first problem it is assumed that two projections of the vector of the perturbing moment onto
principal axes of inertia of the body are small as compared to the restoring moment, while the third
one is of the same order of the magnitude as the moment in question. In the second problem it is
assumed that the perturbing moments are small as compared to the restoring one. Averaged systems
of equations of motion are obtained and investigated in the first and the second approximations.
Examples are considered.

Key words: evolution, rigid body, averaging method, rotation.

1. Introduction

The authors investigated some new problems of the motion of a rigid body about a
fixed point under the action of the perturbing moments of different physical nature.

This paper treats problems of motion about the centre of inertia of a nearly
dynamically spherical rigid body carrying a point mass connected to the body by
the spring and the damper. It is assumed that the frequency for the main body is
much lower that one for the point mass. Using the conservation of the moment of
momentum of the system, a relation is developed for the angular velocity of the
main body. The motion of a dynamically symmetric rigid body with a point mass
m, attached to the point O1 on its axes by means of the spring with the stiffness c
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and the damping coefficient δ, is considered. The system of differential equations
is obtained and investigated. It is similar to the obtained one in [2]. This system
has the first integral. We qualitatively investigate the phase plane of the system.
The critical points of the system are determined. The phase portraits of the system
are constructed numerically, the phase curves describe oscillations and rotations.

We investigate perturbed rotatory motions of a rigid body, that are close to the
regular precession in the Lagrange case, under the action of the moment of forces
that is slowly changing in time and the restoring moment which depends on the
nutation angle. It is assumed in unit 2 that: the angular velocity of the body is large;
restoring and perturbing moments are small with definite hierarchy of smallness of
components. The averaged system of equations of motion is obtained in the first
approximation for the essentially nonlinear two-frequency system in nonresonant
and resonant cases. Example is considered. The qualitative distinctions of motion
are noted. In the second problem in unit 3 it is assumed that the angular velocity of
the body is fairly large, its direction is close to the dynamic axis of symmetry of the
body and the perturbing moments are small compared with the restoring moment.
The small parameter is introduced by a special way and the method of averaging
is used. The averaged equations of motion are obtained in the first and the second
approximations. For the motion under the action of the resistance moment, applied
by the medium, we have found out the evolution of the precession and nutation
angles. The new class of motions of the axially symmetric body with allowance for
the nonstationary perturbing moments is investigated. In [3, 6, 7] the perturbing
moments were stationary.

2. The Motion of a Rigid Body Containing a Viscoelastic Element

We investigate the motion of a nearly dynamically spherical rigid body relative to
the centre of inertia. In a point O1, situated on one of the principal axes of inertia,
the moving mass is attached by the spring and the damper. We locate the origin
of the Cartesian coordinate system associated with the rigid body at the centre of
inertia (point O) of the body and direct the basis vectors e1, e2, e3 by the principal
axis of inertia so, that the basis vector e3 defines the axis, on which the point O1 is
placed. Then the radius vector of the point O1 is ρ = ρe3, and we consider ρ > 0
without loss of generality.

The scheme stated in [1] is utilized in the deduction of equations of motion. The
following inequalities are assumed to be satisfied

�2 � λω � ω2, (ω ≡ |ω| ∼ 1). (1)

Under the assumptions (1) the natural oscillations of the point mass m can be ne-
glected and forced motions are taken into account. We shall look for the forced
motion in the form of decomposition with the respect to degrees of �−2. The
equation of motion of the rigid body with the inertia tensor J ∗

0 can be written down
in the following vector form
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J ∗
0 ω̇ + (ω × J ∗

0 ω) = �(ω) + O(�−4, λ2�−6). (2)

In (1) �2 = c/m, λ = δ/m, where c is the rigidity of the elastic coupling of
combination of the moving mass with the point of the body, δ is the coefficient of
viscous friction. The inertia tensor J ∗

0 corresponds to the body with moving mass
combined with O1. The vector function � contains terms of order �−2, λ�−4 and
is considered to be a polynomial that contains the fourth and the fifth powers of
vector ω.

Suppose that the body principal central moments of inertia are nearly the same
and can be represented in the form

J ∗
01

= J0 + εA′, J ∗
02

= J0 + εB ′, J ∗
03

= J0 + εC ′, (3)

where 0 < ε � 1 is a small parameter. According to (1), �−2, λ�−4 are small
parameters in equations of motion (2). We assume that they are of the same order
of smallness as the gyroscopic moments, i.e. �−2 ∼ ε, λ�−4 ∼ ε. Then, neglecting
by small terms of the order two and higher, we obtain the equation of motion in the
scalar form:

ṗ = ε

J0
qr[B ′ − C ′ + ρ2m(p2 + q2 + r2)],

q̇ = − ε

J0
pr[A′ − C ′ + ρ2m(p2 + q2 + r2)],

ṙ = − ε

J0
pq(B ′ − A′). (4)

Here p, q, r are projections of vector ω on the axes e1, e2, e3.
By multiplying the three equations in (4) by p, q, r respectively and adding

them, we obtain that the first integral of the system is

ω2 = p2 + q2 + r2 = ω2
0 = const. (5)

It allows us to introduce the angles �, ϕ, defining the orientation of vector ω

relative to the rigid body, as follows

p = ω0 cos ϕ sin �, q = ω0 sin ϕ sin �, r = ω0 cos �, (6)

where 0 ≤ � ≤ π , 0 ≤ ϕ < 2π .
Then we take �,ϕ as new variables in equations (4) and introduce the slow

time

τ = εω0
B ′ − A′

J0
t.

Solving obtained equations with respect to derivatives ϕ′, �′ by the slow time we
find

�′ = sin � sin ϕ cos ϕ,

ϕ′ = cos �(µ − sin2 ϕ), (7)
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Figure 1. The domain D = D1 ∪ D2 ∪ D3.

where

µ = A′ − C ′ + ρ2mω2
0

A′ − B ′ .

We investigate the system for � and ϕ (7) which has the first integral

sin2 �(µ − sin2 ϕ) = c1 = sin2 �0(µ − sin2 ϕ0) = const. (8)

The ranges of the variables � and ϕ in this system are 0 ≤ � ≤ π , and 0 ≤ ϕ <

2π ; the parameter µ can assume arbitrary values: −∞ < µ < +∞, depending
on the relationships between the moments of inertia. We divide the domain D of
µ, c1 into three subdomains D1,D2 and D3. The subdomain D1 is specified by the
inequalities µ ≥ c1 ≥ 0 (µ ≥ 1); the subdomain D2 is specified by the inequalities
µ ≥ c1 ≥ µ − 1 (0 ≤ µ ≤ 1); the subdomain D3 is specified by the inequalities
0 ≥ c1 ≥ µ − 1 (µ ≤ 0). The domain D = D1 ∪ D2 ∪ D3 is shown in Figure 1.

The boundaries of the subdomains D1,D2, and D3 are the singular sets for
system (7). The motion corresponding to domains D1 and D3 is oscillatory in �

and oscillatory or rotational in ϕ. The separatrix for the domain D1 is given by
sin2 � = (µ−1)××(µ− sin2 ϕ)−1, and for the domain D3 it is given by sin2 � =
µ(µ − sin2 ϕ)−1 ≤ 1. In the domain D2 oscillations occur both in � and ϕ.

There are 11 distinctive cases for the choice of the parameter µ [2]. Figure 2
shows the graphs of � versus ϕ obtained numerically on the basis of the first
integral (7), for µ = −1.7. According to these graphs, only oscillations occur in
the variable �; in the variable ϕ, oscillations occur within the separatrix sin2 � =
µ(µ − sin2 ϕ)−1 and rotations occur outside this separatrix.

Consider the special cases of the body motion. The value � = 0 is the stationary
point of the first equation (7). If � = 0, then the differential equation for ϕ admits
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Figure 2. The graph of � versus ϕ for µ = 1.7.

the separation of variables. On integrating we obtain the expression

tg ϕ = l tg (±rτ + arctg(l−1tg ϕ0)),

l =
√

µ

µ − 1
, r = √

µ(µ − 1). (9)

Upper and lower signs correspond to the cases µ > 1 and µ < 0. If 0 < µ < 1,
then we have

tg ϕ = j
eJτ a − w

eJτa + w
, (10)

j =
√

µ

1 − µ
, J = 2

√
µ(1 − µ),

a = j−1tg ϕ0 + 1, w = −(j−1tg ϕ0 − 1).

For small �, the system (7) becomes: �′ = � sin ϕ cos ϕ, ϕ′ = µ − sin2 ϕ.
In these equations, the terms of the order higher than linear in � are omitted. For
small �, the equation for ϕ coincides with the corresponding equation for � = 0,
and its solution can be represented in the form (9), (10). On integrating the equation
for � with allowance for (9), we obtain

�2 = �2
0l

±2(l2 cos2 ϕ0 + sin2 ϕ0)
∓1
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× [
cos2(rτ + arctg(l−1 tg ϕ0))

+ l2 sin2(rτ + arctg(l−1 tg ϕ0))
]∓1

. (11)

Upper and lower signs in (11) correspond to µ < 0 and µ > 1 respectively.
If 0 < µ < 1, we define with regard to (10)

�2 = �2
0 cos2 ϕ0

Ae2J τ + BeJτ + C

4eJτ
, (12)

where A = (1 + j 2)a2, B = 2aw(1 − j 2), C = w2(1 + j 2).
Thus, the evolution of rotations of a nearly dynamically spherical rigid body,

containing a viscoelastic element, is investigated.

3. The Influence of Small Perturbing Moments with Definite Hieararchy of
Smallness of Components

Consider the motion of a dynamically symmetric rigid body about a fixed point O
under the action of the restoring moment depending on the angle of nutation � and
the perturbing moment that is slowly changing in time. The equations of motion
have the form [3]

Aṗ + (C − A)qr = k(�) sin � cos ϕ + M1,

Aq̇ + (A − C)pr = −k(�) sin � sin ϕ + M2,

Cṙ = M3,

Mi = Mi(p, q, r, ψ,�, ϕ, τ), τ = εt (i = 1, 2, 3),

ψ̇ = p sin ϕ + q cos ϕ,

�̇ = p cos ϕ − q sin ϕ,

ϕ̇ = r − (p sin ϕ + q cos ϕ)ctg �. (13)

Here p, q, r are the projections of the angular velocity vector on the principle
axes of inertia; Mi (i = 1, 2, 3) are the projections of the vector of the perturbing
moment on the same axes, depending on the slow time τ = εt (ε � 1 is the small
parameter) and assumed to be the periodic functions of the Euler angles ψ,�, ϕ

with periods 2π ; and A is the equatorial and C is the axial moment of inertia about
the point O, A �= C.

We make the following assumptions:

p2 + q2 � r2, Cr2 � k, |Mi | � k (i = 1, 2), M3 ∼ k, (14)

which mean that the direction of the angular velocity of the body is close to the
axis of dynamic symmetry; the angular velocity is large; and two projections of the
vector of the perturbing moment onto the principal axes of inertia of the body are
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small as compared to the restoring moment, while the third is of the same order as
it. On the basis of inequalities (14), we introduce the small parameter ε and set

p = εP, q = εQ, k(�) = εK(�), ε � 1,

Mi = ε2M∗
i (P,Q, r, ψ,�, ϕ, τ), (i = 1, 2),

M3 = ε2M∗
3 (P,Q, r, ψ,�, ϕ, τ), τ = εt. (15)

The problem that we pose is that of investigating the asymptotic behavior of the
solutions of the system (13) for small ε, when conditions (14) and (15) are satisfied.
To solve this problem, the averaging method [4] on the time interval of order ε−1

is used.
We make the transformation of variables

P = a cos γ + b sin γ + KC−1r−1 sin � sin ϕ,

Q = a sin γ − b cos γ + KC−1r−1 sin � cos ϕ,

a = P0 − K0C
−1r−1

0 sin �0 sin ϕ0,

b = −Q0 + K0C
−1r−1

0 sin �0 cos ϕ0, K0 = K(�0). (16)

Here r0, ψ0,�0, ϕ0, P0 and Q0 are constants equal to the initial values of the
variables at t = 0. The additional variable γ is defined by the equation

γ̇ = n, γ (0) = 0, n = (C − A)A−1r. (17)

Using formulas (16), we transform the variables P,Q, r, ψ,�, ϕ, γ in the sys-
tem (13) to new variables a, b, r, ψ,�, α, γ , where

α = γ + ϕ. (18)

After performing the manipulations, we obtain the system of seven equations
that is more convenient for what follows:

ȧ = εA−1(M0
1 cos γ + M0

2 sin γ ) + εKC−2r−2M0
3 sin � sin α

− εKC−1r−1 cos �(b − KC−1r−1 sin � cos α)

− εC−1r−1 sin � sin α(a cos α + b sin α)
dK

d�
,

ḃ = εA−1(M0
1 sin γ − M0

2 cos γ ) − εKC−2r−2M0
3 sin � cos α

+ εKC−1r−1 cos �(a + KC−1r−1 sin � sin α)

+ εC−1r−1 sin � cos α(a cos α + b sin α)
dK

d�
,

ṙ = εC−1M0
3 , γ̇ = (C − A)A−1r, �̇ = ε(a cos α + b sin α),

ψ̇ = ε(a sin α − b cos α)cosec � + εKC−1r−1 cos �,

α̇ = CA−1r − ε(a sin α − b cos α)ctg� − εKC−1r−1 cos �. (19)
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Here, M0
i denote functions obtained from M∗

i (see (15)) as a result of substitution
(16), (18), i.e.,

M0
i (a, b, r, ψ,�, α, γ, τ) = M∗

i (P,Q, r, ψ,�, ϕ, τ), (i = 1, 2, 3). (20)

Let us consider the system (19) from the standpoint of employing the averaging
method [4]. In [3, 5] the motions of a rigid body are investigated for assumption
(14) when the perturbing moments do not depend on t and the restoring moment
is k = const or k = k(�). If to assume that the perturbing moments depend
on fast variable t , then we obtain the essentially nonlinear system and the direct
application of the averaging method is very difficult.

We investigate the case, when the perturbing moments depend on slow time τ =
εt , t ∈ [0, ε−1). The the system (19) contains the slow variables a, b, r, ψ,�, τ and
the fast variables, namely the phases α and γ . The functions M0

i (i = 1, 2, 3) in
(20) are 2π -periodic in α and γ . Then the system (19) contains two rotating phases
α and γ , and the corresponding frequencies CA−1r and (C−A)A−1r are variable.
At averaging the system (19) we should distinguish two cases: the nonresonant
case, when the frequencies CA−1r and (C−A)A−1r are not commensurable (C/A

is an irrational number), and the resonant case, when they are commensurable
(C/A = i/j , i/j ≤ 2, where i and j are natural relatively prime numbers). A
very important feature of the system (19) is the fact that the frequency ratio is
constant: [(C − A)A−1r]/[CA−1r] = 1 − AC−1. The averaging of the nonlinear
system (19) is equivalent to the averaging of a quasi-linear system with constant
frequencies.

In the nonresonant case (C/A �= i/j ), we obtain the first-approximation aver-
aged system by the independent averaging of the right-hand sides of the system (19)
with respect to both fast variables. As a result, we obtain the following equations
for the slow variables

a′ = Aµ1 − bKC−1r−1 cos � + KC−2r−2µs
3 sin �

− 1

2
bC−1r−1 sin �

dK

d�
,

b′ = A−1µ1 + aKC−1r−1 cos � − KC−2r−2µc
3 sin �

+ 1

2
aC−1r−1 sin �

dK

d�
,

r ′ = C−1µ3, ψ ′ = KC−1r−1, �′ = 0,

µ1 = 1

4π2

2π∫
0

2π∫
0

(M0
1 cos γ + M0

2 sin γ ) dα dγ,

µ2 = 1

4π2

2π∫
0

2π∫
0

(M0
1 sin γ − M0

2 cos γ ) dα dγ,
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µ3 = 1

4π2

2π∫
0

2π∫
0

M0
3 dα dγ,

µs
3 = 1

4π2

2π∫
0

2π∫
0

M0
3 sin α dα dγ, µc

3 = 1

4π2

2π∫
0

2π∫
0

M0
3 cos α dα dγ. (21)

Here (. . .)′ = d/dτ , τ = εt .
We assume that the perturbing moments Mi (i = 1, 2, 3) are linear-dissipative

and write them with allowance for expressions (15) for p and q:

M1 = −ε2I1(τ )P, M2 = −ε2I1(τ )Q, M3 = −εI3(τ )r. (22)

Here I1(τ ), I3(τ ) are positive integrable functions on the interval [0, 1).
After trasforming to new slow variables a, b, r, ψ,� we obtain the averaged

system (21) of the form

a′ = −I1(τ )A
−1a − C−1r−1b

(
K cos � + 1

2
sin �

dK

d�

)
,

b′ = −I1(τ )A
−1b + C−1r−1a

(
K cos � + 1

2
sin �

dK

d�

)
,

r ′ = −I3(τ )C
−1r, ψ ′ = KC−1r−1, �′ = 0. (23)

The solution of the first-approximation system for the slow variables in this case
has a view

a = exp


−A−1

εt∫
0

I1(τ ) dτ


(P0 cos β + Q0 sin β

− K0C
−1r−1

0 sin �0 sin(β + ϕ0)),

b = exp


−A−1

εt∫
0

I1(τ ) dτ


(P0 sin β − Q0 cos β

+ K0C
−1r−1

0 sin �0 cos(β + ϕ0)),

β = C−1r−1
0

(
K0 cos �0 + 1

2
sin �0

dK

d�

∣∣∣∣
�=�0

)

×
εt∫

0

exp


C−1

εt∫
0

I3(τ ) dτ


 dτ,
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r = r0 exp


−C−1

εt∫
0

I3(τ ) dτ


, � = �0, K0 = K(�0),

ψ = ψ0 + KC−1r−1
0

εt∫
0

exp


C−1

εt∫
0

I3(τ ) dτ


dτ. (24)

As a result of substitution of the expressions for a, b and r from (24) into
expressions (16) and (15) for P,Q, r, q we have

p = exp


−A−1

εt∫
0

I1(τ ) dτ


(p0 cos(γ − β) − q0 sin(γ − β)

+ k0C
−1r−1

0 sin �0 sin(γ − β − ϕ0)
)

+ kC−1r−1
0 sin �0 sin ϕ exp


C−1

εt∫
0

I3(τ ) dτ


 ,

q = exp


−A−1

εt∫
0

I1(τ ) dτ


(p0 sin(γ − β) + q0 cos(γ − β)

− k0C
−1r−1

0 sin �0 cos(γ − β − ϕ0)
)

+ kC−1r−1
0 sin �0 cos ϕ exp


C−1

εt∫
0

I3(τ ) dτ


 ,

γ = (C − A)A−1r0

τ∫
0

exp


−C−1

εt∫
0

I3(τ ) dτ


 dt. (25)

We should note certain qualitative features of motion in this case. The modulus
of the axial rotational velocity r decreases monotonically in the exponential fash-
ion. The increment of the precession angle ψ −ψ0 slowly increases exponentially.
The slow variables a and b are the products of the exponentially decreasing factor
and the oscillating factor. That all follows from (24).

In accordance with (25), the terms of the projections p and q, resulting from the
initial values p0 and q0, attenuate exponentially and oscillate. At the same time, the
projections p and q contain the exponentially increasing terms that are proportional
to the restoring moment, thus leading to the exponential increase in (p2 + q2)1/2.
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4. The Influence of Small Perturbing Moments as Compared to the
Restoring Ones

Consider the motion of a dynamically symmetric rigid body about a fixed point O
due to a perturbing moment and a restoring moment (13).

We make the following assumptions

p2 + q2 � r2, Cr2 � k, |Mi | � k (i = 1, 2, 3), (26)

which mean that the direction of the angular velocity of the body is close to the
axes of dynamic symmetry; the angular velocity is large enough; and the perturbing
moments are small as compared to the restoring ones. Inequalities (26) justify the
introduction of the small parameter ε � 1, so that

p = εP, q = εQ, k(�) = εK(�),

Mi = ε2M∗
i (P,Q, r, ψ,�, ϕ, τ), τ = εt (i = 1, 2, 3). (27)

The problem of investigating the asymptotic behavior of the system (13) for small
ε and conditions (27) is observed. We employ the averaging method [4] on the time
interval of order ε−1.

After a number of transformations of the system (13) we obtain the system of
the form [6]

ȧ = εA−1(M0
1 cos γ + M0

2 sin γ )

− εKC−1r−1
0 cos �(b − KC−1r−1

0 sin � cos α)

− εC−1r−1
0 sin � sin α(a cos α + b sin α)

dK

d�

+ ε2KC−1r−2
0 δ cos �(b − 2KC−1r−1

0 sin � cos α)

+ ε2C−1r−2
0 δ sin � sin α(a cos α + b sin α)

dK

d�

+ ε2KC−2r−2
0 M0

3 sin � sin α,

ḃ = εA−1(M0
1 sin γ − M0

2 cos γ )

+ εKC−1r−1
0 cos �(a + KC−1r−1

0 sin � sin α)

+ εC−1r−1
0 sin � cos α(a cos α + b sin α)

dK

d�

− ε2KC−1r−2
0 δ cos �(a + 2KC−1r−1

0 sin � sin α)

− ε2C−1r−2
0 δ sin � cos α(a cos α + b sin α)

dK

d�

− ε2KC−2r−2
0 M0

3 sin � cos α,
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δ̇ = εC−1M0
3 , M0

i (a, b, δ, ψ,�, α, γ, τ) = M∗
i (P,Q, δ,ψ,�, ϕ, τ),

ψ̇ = ε(a sin α − b cos α)cosec � + εKC−1r−1
0 − ε2KC−1r−2

0 δ,

γ̇ = (C − A)A−1r0 + ε(C − A)A−1δ, �̇ = ε(a cos α + b sin α),

α̇ = CA−1r0 + εCA−1δ − ε(a sin α − b cos α)ctg �

− εKC−1r−1
0 cos � + ε2KC−1r−2

0 δ cos �. (28)

In the system (28), a, b, δ, ψ,� are the slow variables and α, γ are the fast
variables.

In [6, 7], the motions of the rigid body are investigated at assumption (26), that
the perturbing moments do not depend on t and the restoring moment is k = const.
or k = k(�).

We investigate the case of dependence of perturbing moments on slow time
τ = εt , t ∈ [0, ε−1). Functions M0

i (i = 1, 2, 3) in (28) are periodic in α and γ

with the period 2π .
In a number of studies, for example [8, 9], perturbing motions of the rigid body,

similar to Lagrange case under the action of the moment slowly changing in time,
are investigated.

Let us consider the perturbed Lagrange motion, allowing for the moments ap-
plied to the body from the external medium. We assume that the perturbing mo-
ments Mi (i = 1, 2, 3) (see (27)) have the form

M1 = −ε2I1(τ )P, M2 = −ε2I1(τ )Q, M3 = −ε2I3(τ )r, (29)

where I1(τ ), I3(τ ) are the positive integrable functions on the interval [0, 1).
After several transformations the solution of the averaged system of first-

approximation equations for the slow and the fast variables in the case (29) has
the form

a(1) = exp


−A−1

εt∫
0

I1(τ ) dτ


(a0 cos wt − b0 sin wt),

b(1) = exp


−A−1

εt∫
0

I1(τ ) dτ


(b0 cos wt + a0 sin wt),

δ(1) = −C−1r0

εt∫
0

I3(τ ) dτ,

ψ(1) = εKC−1r−1
0 t + ψ0, �(1) = �0,

α(1) = CA−1r0t − εA−1

t∫
0


 εt∫

0

I3(τ ) dτ


 dt
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− εKC−1r−1
0 cos �0t + ϕ0,

γ (1) = (C − A)A−1r0t − ε(C − A)A−1C−1r0

t∫
0


 εt∫

0

I3(τ ) dτ


 dt. (30)

Here

w = 1

2
εC−1r−1

0

(
2K cos �0 + sin �0

dK

d�

)
;

the quantities a0, b0 are determined by the following way: a = P0 − λ0 sin ϕ0,
b = −Q0+λ0 cos ϕ0, λ0 = K0C

−1r−1
0 sin �0; the variable γ = γ0 has the meaning

of the phase of the oscillations, α = γ + ϕ, r = r0 + εδ; P0, Q0, r0, ψ0, ϕ0 are the
initial values of the appropriate variables at t = 0.

We can determine the evolution of the precession and the nutation angles in the
second approximation:

�ν
ε(t) = �0 + εAC−1r−1

0 exp


−A−1

εt∫
0

I1(τ ) dτ


C0 sin(α(1) − χ)

+ εK0C
−2r−2

0

εt∫
0

I1(τ ) dτ sin �0,

ψν
ε (t) = ψ0 + εKC−1r−1

0 t + S(1),

S(1) = ε2KC−2r−1
0

t∫
0


 εt∫

0

I3(τ ) dτ


 dt + ε2AK2C−3r−3

0 cos �0t

− εAC−1r−1
0 exp


−A−1

εt∫
0

I1(τ ) dτ


C0 sin(α(1) + β)cosec �0,

sin χ = cos β = b(1)(C0)−1 exp


A−1

εt∫
0

I1(τ ) dτ


,

C0 =
√
(a0)2 + (b0)2. (31)

Thus the term of order ε in the expression (31) for �ν
ε is the product of the

exponentially decreasing factor

exp


−A−1

εt∫
0

I1(τ ) dτ


,
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caused by the energy dissipation, and the oscillating factor sin(α(1) − χ). The
magnitude of the attenuation decrement and the behaviour of the slow phase of
small oscillations are evident from formulas (30) for a(1), b(1). The term S(1) of
order O(ε) in the expression (31) for ψν

ε (t) gives a more precise definition to
the formula for the angular precession velocity ωp = KC−1r−1

0 , obtained in the
approximate gyroscope theory [10].
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