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PERTURBED ROTATIONAL MOTIONS OF A RIGID BODY

D.D. LESHCHENKO

Institute of Low Temperature Technology and Energetics, 270057 Odessa, Petra Velikogo 1/3, USSR

1. INTRODUCTION

The author investigate perturbed rotational
motions of a rigid body that are close to
regular precession in the Lagrange case when the
restoring moment depends on the mutation angle.
It is assumed that the angular velocity of the
body is large, its direction is close to the
axis of dynamic symmetry of the body, and that
two projections of the vector of the perturbing
moment onto the principal axes of inertia of the
body are small as compared to the restoring
moment, while the third is of the same order of
magnitude as the moment in gquestion. A small
parameter is introduced in a special way; the
averaging method is employed. The averaged
system of equations of motion is obtained in
first approximation. Examples are considered.

2. MATERIALS AND METHODS

Consider the motion of dynamically symmetrical
rigid body about fixed point O under the
action of restoring moment depending on the
nutation angle @ and perturbing moment. The
equations of motion have the form

Ap' + (C - RA)gr = k(0) sin 6 cos ¢ + M

Ag’ + (A - C)pr = -k(0) sin @ sin ¢ + M, (1)

Cr’ = My M, = M (P ry.8.p,t) (i=1,23)

1

w = (psin ¢ + g cos ¢) cosec O,

0" = pgcos ¢ - g sin ¢,
oF

r - (p sin ¢ + q cos ¢) ctg @

=
i

Dynamic equations (1) are written in projections
onto the principal axes of inertia of the body,
passing through point O . Here p, g, r are the

projections of the angular velocity vector of
the body onto these axes, Mi(i = 1,2,3) are the
projections of the vector of the perturbing
moment onto these same axes, which are
2n-periodic functions of the Euler angles vy, @,
¢p; and A and C are the equatorial and axial
maments of inertia of the body relative to point
0., A#%LC.

The perturbing moments Miin (1) are assumed to

be known functions of their arguments. For M, =
=0 (1=1,2,3) and k(6) = const = mgl

equations (1) correspond to the Lanrange case.
Here m is the mass of the body; g is accele-
ration due to gravity; and 1 is the distance
from fixed point 0 to the center of gravity of
the body. .

.

We make the following initial assumptions:

pz % q2 « rz, cr2 » k
(2)

Mi & k (i =1, 2}, 3

which mean that the direction of the angular
velocity of the body is close to the axis of
dynamic symmetry; the angular velocity is large;
two projections of the vector of the perturbing
moment onto the principal axis of inertia of
the body are small as compared to the restoring
moment, while the third is of the same order of
magnitude as this moment. Inequalities (2) allow

us to introduce the small parameter £ and to
set
p = eP, q=£eQ, k(8) = egk(g)}, E« 1
2% ’
M, = ™M (P.Q,x,0.0,p,t) (i=1, 2) (3)

*
Mg = EM3(P,Q.r,w.0.rp,t)

The problem that we formulate is that of
investigating the asymptotic behavior of the
solutions of system (1) for small ¢, if
conditions (2) and (3) are satisfied. This will
be done by employing the averaging method: [1,
27. A mumber of studies, e.g. [3 - 5], have
investigated perturbed motions close to Lagrange
motion.
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In system (1) we meke change of variables (3).
Let us consider the zero-approximation system:
we set £ = 0. Then the last four obtained
equations yield

¢ = ot + g (4)

Here Tyr Wor 80, 9q are constants equal to the

initial wvalues of the corresponding variables
for t = 0. We substitute (4) into the first two
equations of system (1) with allowance for
expressions (3) for & = 0, and we integrate the
resultant system of the equations for P, Q. We
write the solution in the form

=acosy, +b sin)ru+ Koc_lralsin Gosin(rotﬁoo)

e
1

12
H

= a s:'m)r0 -b cosy,+ KDC_lrslsin roos(rotmo)

_ _ ~1. =1, p
a = PD KUC Iy sin 90511'1 P 5)
b= -0 +K C_lrilsin 0 _cosg

=0 0 0 0 0’

= nut nz(C-A)Aulr 20
Yo = Mt Mg 0 '
|n0/r0[ < 1, KO = K(HO)
Here PD’ QO are the initial values of the new

variables P, Q, introduced in accordance with
(3). system (1) with allowance for expressions
(3) is essentially nonlinear and therefore we
introduce the additional variable y, defined by
the equation

LR ¥(0) =0, n=(c- A}_lr A._I (6)

g

By eliminating the constants, with allowance for
(4), it is possible to rewrite the first two
expressions in (5) in equivalent form:

1

P=acos y+bsiny+ Ko r_lsin 8 singp (7)

=asiny - bcos y + k¢ lr sin 0 cos ¢

0
'

and to solve for a, b:

=1,

n
I

*Pcosy«*Qsim«;-KC_lr sin 0 sin (y + )

b=Psiny-Qcosy+ K *r Ysin 0 cos (v + ¢)

Let us consider system (1) with allowance for
expressions (3) for ¢ # 0. Using formulas (7),
(8) in system (1) with allowance for expression
(3), (6) we convert from the variables P, 8. &
@, 0. p, y to the new variables a, b, r, v, @,
®, 7y, where

a =3ty (9)

After some manipulation, we obtain & system of
seven equations

5 e 0 ; ik
a’ = A J'(P-’Ilcc)s & Mgmn 7)) - cKe lr lc:os 0(b -
2 chlrﬁlsin O cos a) + r.KC-Qr"zMgsin 6 sin a -

g P :
- &C 'r "sin @ sin afa cos o + b sin a) dK/do

4 =150 0 -
b = ea (Mls1n Y - Mzcos 7) + eKC J'r lcos o(a +

_l ..1 = = e s
+ KC "r "sin @ sin o) - eKe 2r Qﬂg sin 6 cos.a +
] A ;
+£Cr "sin 0 cos afa cos « + b sin o) dK/do
" (10)
2 & ]MO,
3
¥ = £ cosec 6(a sin a - b cos «) + EKC*lr_l

6" = ¢(a cos « + b sin «),
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r:':m_lr-ectge(asinu~bcosu)—

—cKC_lr-lcos 0, 7 = (e - A)Awlr

*
Here M[i‘J denotes functions obtained from Mi.
(see (3)) as a result of substitution (7) - (9),

i.e.,

*
M (a,b,r,y,0,0,7,t) = M(P,Q,r,9,0,9,t)

(1=1, 2, 3) an

System (10) contains the slow variables a,b,r,
w, 6 and fast variables represented by the
phases «, y and time t. Let us assume, for the
sake of simplicity, that the perturbing moments

M: are independent of t. Since M: (i =1,2,3)
are 2n-periodic in ¢, it follows, in accordance
with (7) - (9), that functions Miofrom (11) will
be 2n-periodic functions of « and y. Then
system (10) contains two rotating phases o and
vy and the corresponding frerquencies CA_lr and

(c - A)}flr are variable. In averaging system
(10) two cases should be distinguished: the

. =1
nonresonant case, when frequencises CA "r and

(c-n)n 1r are noncomensurable, and the resonant
case, when these frequencies are comensurable
[6]. A very important feature of system (10) is
the fact that the ratio of the frequencies is

lconstatnt [(c-A)A_lr]/[CA“lr] =1 -ac! and the
resonant case occurs for
c/a = i/, ifis 2 (12)

where 1 and j are relatively prime natural
numbers, while in the nonresonant case C/A is
‘an %ational nurber. As a result of (12),
averaging of nonlinear system (10), in which

MS is independent of t , is equivalent to

averaging of a quasilinear system with constant
frequencies. This can be achieved by introducing
the independent variable y .

In the nonresonant case (C/A # i/l) we obtain
the first-approximation averaged system by
independent averaging of the right sides of
system (10) with respect to both fast variables
w, ¥. Bs a result, we obtain the following
equations for the slow variables:

a’ = rn_lul— chC_lr-lcos a + gKC_2r_2sin 0 pf =

AR i g dK/da (13)

Hy * E&KCle 1005 0 - .gKC-zr_zsin 8;1§ +

+ 1/2 gC lr_la sin 0 d¥/de

-1 -1 -1

r’ = eC Hye Yo ERRG T = 0" =0
1 2n 2r e
0 0,
My = e [ I(Mlcos ¥ + Mjsin v) de dy
T 0 0
1 2n 2n
L 0. . _.0
Hoy = 4;12 f .[‘(Mlsm ¥ M2 cos y) de dy
0 0
1 2 2n
m :"—EI JMgdq dj,
3 4
0 0
2n 2n
s _ " Q s
ﬂ3“4ﬂgj JM?)ch(dad}e,
0 0
1 2n 2n
(- A 0 -
uy =3 ] [ M3 cosadady
4n 00
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Note that the last eguation in system (13) can
be integrated, it yields o0 = ¢ G

As an example of restoring moment depending on
the nutation angle consider rigid bedy with a
spring connected to the point of the body N.
The tip L of the spring is attached fixedly,
The body is under the action of gravity force
mg and elastic force of spring F, the modulus
of which is proportional to the deformation of
spring F = A\ (8 - Sb). Here » 1is stiffness

coefficient of spring. In this case
moment have the form

restoring

k(0) = mgl + abz [1 - sy(h% 22- 2hz cos 0)" /2

here ON = z, 0C = 1, oL =

h, LN = 8 = ().
According to (3) k(B) = eK(0).

Let us consider perturbed Lagrange motion with
allowance for the moments acting on our rigid
body from the envirocnment. We will assume that
the perturbing moments Mi (i = 1,2,3) with

allowance for expressions (3) for p and g have
the form [7]

{15}

Here J'.L,, Izare constant proportionally factors
that depend on the properties of the mediun and
the shape of the body.

For 'the nonresonant case we obtain averaged
system (13) of the form

&1 1-1
= —cffﬁ a-eC "r "b(K cos 0 + 1/2 sin @ dK/de)

(16)

2
H

—L:-.Iln_lb+ec_lr_la(l( cos 6 + 1/2 sin 6 dK/dp)

_ Equation (16) for -

r’ o= -¢l C_lr, o= KO

. lr-l ;

Integrating the third equation in (16), we
obtain

_ _ =1
r = rgexp(-eI,C t), ry# 0 (17)

can be integrated with
allowance for (17); it yields

. -1.-1 “Tow .
v =g+ KIgTrg lexp(eIC 7t) - 1] (18)

here Yys Wy were obtained in (4). As can be
seen from (16), the angle of nutation maintains
constant value 9 = 00. T

Substituting (17) for r in the first two
equations in (16), we obtain a system whose
solution is described as follows:

i 3
a-= exp(-EIlA t)[PO cos i1 + QO sinn -

_l : ]
- Ky lro sin 0, sin(n + s;oo)] (19)

_ - =1 " _
b = exp( EIIA t)[P0 sin n QO cos n +

-1 -1 .
* K€ TryTsin @) cos(n + ¥g)]

-1.-1
. +
r, 13 (K cos 0

n =

+1/2 sin 0 dK/dQ)[exp(cI3c_lt) = 19

Ky = K(0g)
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As a result of substitution into expressions
(7), (3) for P, Q, p, q of the expressions for

a and b from (19) and for r from (17), we
obtain

o= exp(“sIlB_lt)[pO cos(yn) - g sin(yn) +

e .
¥ k€ “r,sin 8051n(7-n—w0)] +

+ 1 ey texp(e1,07Tt) sin 6 sin ¢ (20)

0 0

q = exp(—crla'lt)[po sin(y - n) +

g I S,
+ 4y cos{y - 1) - kOC ry" sin G, cos(y -1 -rpo‘}"'

e W 8 -1 ;
+ ke ry exp (r,13C t) sin 00 cosp

¢ c-a 1, 1
g = 2o 0 exp(—cI3C 5 8 Py = EPO.

I3 A £

qo - EQG '

ko=cK0

For the body with spring the expression (14) for
the restoring moment k = k(6) must be
substitute into expressions (20) and this
expression (14) for k = k(% ) when 8 = GO.In
this case

n = r_(lj lgle_l{k cos 0 + JL/Z)LI'L‘Zzzsinze‘i(h2 +.z

2

-3/2

™ 21’1%;605 8) ] [exp(cIsc_lt} -1]

Let us poi nt out some qualitative features of
motion in the case in question. The modulus of
the awial rotational velocity r decreases
menotonically in exponential fashion in
accordance with (17). The increment of the

precession angle gy - Vo increases slowly expo-

nentially in accordance with (18). It follows
from (19) that the slow variables a and b tend
monotonically to zero exponentially.

In accordance with (20), the terms of the
projections p and g that are due to the
initial values Py 9y attenuate exponentially.

At the same time, projections p and g contain
exponentially increasing terms that are propor-
tional to the restoring m cmerfi,with the result
that the quantity (p2 + q?)lf2
nentially.

grows expo-

3. CONCLUSIONS

Perturbed rotational motions of a rigid body
that are close to regular precession in the
Lagrange case when the restoring moment depends
on the nutation angle are investigated. It is
assumed that the angular velocity of the body is
large, its direction is c¢lose #o the axis of
dynamic symmetry of the body, and that twg
projections of the vector of the perturbing
moment intoc the principal axes of inertia of the
body are small as compared to the restorineg
moment, while the third is of the same order of
magnitude as this moment. These assumptions
allow us to introduce the small parameter, the
averaging method is erployed. The averaged
system of equations of motion is obtained in
first approximation in the nonresonant case. As
an example of restoring moment depending on the
nutation angle consider rigid body with a spring
connected to the point of the body. Perturbed
Lagrange motion with allowance for the linear-
dissipative moments acting on rigid bedy from
the environment is considered.
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