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Abstract. Rapid rotational motion of a dynamically asymmetric satellite relative to the center of mass
is studied. The satellite has a cavity filled with viscous fluid at low Reynolds numbers, and it moves
under the action of gravitational torque and the external resistance torque. The rotational motions are
considered within of the model of a quasi-rigid body whose center of mass moves in a circular orbit
around the Earth. The problems of dynamics, generalized and complicated by accounting for various
disturbing factor remain rather topical till now.

1 Introduction

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. [15, 16, 17, 18, 19, 20, 21, 22, 23]. Consider the mo-
tion of a satellite about the center of mass under the action of the external resistance torque in the
gravitational field. The body contains a cavity fully filled with highly viscous homogeneous fluid.
Interest in problems in the dynamics of bodies with cavities containing fluid has grown considerably
in connection with rapid development of missile and space technology. The fluid fuel tanks on board
a rocket, satellite or spacecraft can significantly influence the motion of these flight vehicles. Rota-
tions are considered within the model of a quasi-rigid body, whose center of mass moves in an elliptic
orbit around the Earth. Such problem investigated in[13, 14, 16]. The problems of dynamics, general-
ized and complicated by accounting for various disturbing factors, remain rather topical till now. The
papers [1, 2, 3, 4, 7] study rotational motions of bodies about a fixed point under the action of pertur-
bation torques of various nature (gravitational, influence of a cavity filled with viscous fluid, resistant
medium, etc). Papers are concerned with the motion of a rigid body having a cavity that is completely
filled with a viscous fluid. (The basic assumption is that the Reynolds number is small.) In papers
[1, 2] satellite motion under the action of gravitational torques was studied.The attitude dynamics of a
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fast rotating triaxial satellite under gravity-gradient is revisited in [15]. In articles [4, 5] fast rotational
motion of a heavy rigid body about a fixed point when external resistance is present was investigated.
Fast rotation of a dynamically asymmetric satellite about the center of mass under the action of the
gravitational torque and the drag torque was studied. Secular changes in the rotational motion of a
planet due to dissipation of energy in its core are investigated in [8]. In paper [6] rapid rotational
motion of a dynamically symmetric satellite about a center of mass under the action of gravitational
torque and the external resistance torque was investigated. In present paper this model extend for the
case of a dynamically asymmetric satellite.

2 Statement of the problem

We introduce three Cartesian coordinate systems whose origins coincide with the satellite center of
inertia [2, 3]. The coordinate system Oxi, (i = 1,2,3) moves translationally together with the center
of inertia: the axis Ox1 is parallel to the position vector of the orbit perigee, the axis Ox2 is parallel
to the velocity vector of the satellite center of mass at the perigee, and the axis Ox3 is parallel to
the normal to the orbit plane. The coordinate system Oyi (i = 1,2,3) is attached to the satellite and
oriented along the angular momentum vector G. The axis Oy3 is directed along G, the axis Oy2 lies
in the orbit plane Ox1x2, and the axis Oy1 lies in the plane Ox3y3 and is directed so that the vectors
y1,y2 ,y3 form a right trihedral [2, 3]. The axes of the coordinate system Ozi (i = 1,2,3) are related to
the principal central axes of inertia of the rigid body. The mutual position of the principal central axes
of inertia and the axes Oyi is determined by the Euler angles. The direction cosines αi j of the axes 0zi

with respect to the system Oyi are expressed via the Euler angles φ,θ,ψ by well-known formulas [2].
The position of the angular momentum vector G with respect to the center of mass in the coordinate
system Oxi is determined by the angles λ and δ as shown in Fig. 1. The equations of motion of the
body about the center of mass are written in the form [3]

Fig. 1

dG
dt

= L3,
dδ
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G
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=
L2

Gsinδ
, (2.1)
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dθ
dt

= Gsinθsinφcosφ
(

1
A1

− 1
A2

)
+

L2 cosψ−L1 sinψ
G

,

dφ
dt

= Gcosθ
(

1
A3

− sin2 φ
A1

− cos2 φ
A2

)
+

L1 cosψ+L2 sinψ
Gsinθ

,

dψ
dt

= G
(

sin2 φ
A1

+
cos2 φ

A2

)
− L1 cosψ+L2 sinψ

G
ctgθ− L2

G
ctgδ.

Here, Li are the torques of applied forces about the axes Oyi, G is the value of the angular momen-
tum, and the Ai (i = 1,2,3) are the principal central moments of inertia about the axes Ozi. In some
cases, along with the variable θ, it is convenient to use an important characteristic, the kinetic energy
T as an additional variable. It‘s derivative has the form

dT
dt

=
2T
G

L3 +Gsinθ
[

cosθ
(

sin2 φ
A1

+
cos2 φ

A2
− 1

A3

)
× (2.2)

×(L2 cosψ−L1 sinψ)+

+ sinφcosφ
(

1
A1

− 1
A2

)
(L1 cosψ+L2 sinψ)

]
.

The satellite center of mass moves in a circular orbit with revolution period Q . The true anomaly
ν depends on time t as follows:

ν = ω0t, ω0 =
2π
Q
. (2.3)

Here, ω0 is the angular velocity of orbital motion. We write the projections of the gravitational torque
Lg

i and the external resistance torque Lr
i onto the axes Oyi in the form introduced in [3, 4]. Here we

present the projection onto the axis Oy1 (the projections on the other axes can be written in a similar
way):

Lg
1 = 3ω2

0

3

∑
j=1

(β2β jS3 j −β3β jS2 j) (2.4)

Lr
1 =−G

3

∑
i=1

(
Ii1α1iα31

A1
+

Ii2α1iα32

A2
+

Ii3α1iα33

A3

)
, (2.5)

Sm j =
3

∑
p=1

Apα jpαmp,β1 = cos(ν−λ)cosδ,

β2 = sin(ν−λ) , β3 = cos(ν−λ)sinδ.

Projections of the torque of forces of highly viscous fluid in a cavity Lp
i onto the axes Oyi (i = 1,2,3)

have the following form [1]:

Lp
i =

P
A1A2A3

{
ω•Bi +3ω2

0 (D+S) ·αi} , i = 1,2,3 (2.6)

i = 1,2,3,

ω =

 p
q
r

 , Bi =

Bi
1

Bi
2

Bi
3

 , αi =

αi1
αi2
αi3

 , α∗ =
1

1−α2
33
,
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D =

A2A3 (A3 −A2) [−γ31γ33r+α∗ (F1 pα1 +M1 pα2)]
A1A3 (A1 −A3) [−γ32γ33r+α∗ (F2 pα1 +M2 pα2)]
(A3 −A2)

[(
γ2

32 − γ2
31
)

r−α∗ (F3 pα1 +M3 pα2)
]


F =

 γ31γ33α33 +βα1γ33 +βα2γ32
γ32γ33α33 +βα3γ33 +βα2γ31(

γ2
32 − γ2

31
)

α33 +βα3γ32 +βα1γ31

 ,

M =

 γ2
32α32 + γ32 (γ33α33 −υ3)

γ2
33α31 + γ31 (γ33α33 −υ3)

γ33 (γ32α31 + γ31α32)

 ,

S =

 γ31
[
γ33rA3(A1A2 −A2

1 −A2A3 +A2
3)+Q1)

]
γ32

[
γ31 pA1(A3A2 −A2

2 −A1A3 +A2
1)+Q2

]
γ33

[
γ32qA2(A1A3 −A2

3 −A1A2 +A2
2)+Q3

]
 ,

Q1 = γ32qA2(A1A3 −A2
1 −A2A3 +A2

2),

Q2 = γ33rA3(A1A2 −A2
2 −A1A3 +A2

3),

Q3 = γ31 pA1(A2A3 −A2
3 −A1A2 +A2

1),

γ3i = β1α1i +β2α2i +β3α3i, i = 1,2,3,

pα1 = pα31 +qα32, pα2 = pα32 +qα31,

υα1 =−α22υ1 +α12υ2, υα2 =−α23υ1 +α13υ2,

υα3 =−α21υ1 +α11υ2,

Bi
1 =

[
ω2

2A2(A1 −A2)(A2 −A3 +A1)+

ω2
3A3(A1 −A3)(A3 −A2 +A1)

]
αi1.

Here, αi j are direction cosines between coordinate systems Oyi(i = 1,2,3) and Ozi(i = 1,2,3),
p, r, q are projections of the absolute angular velocity vector ω̄ of the satellite relative to the 0x1x2x3
coordinate system onto the Ozi(i = 1,2,3) axes. Quantity P̃ is a tensor depending on the cavity shape
only, it characterizes the dissipative torque of forces, caused by viscous fluid, in the quasistatic ap-
proximation [1]. For the sake of simplicity, in (2.6) the so called scalar tensor is considered, which is
determined by a single scalar quantity P > 0. The components of this tensor are P̃i j = Pδi j , Where
δi j are Kronecker‘s symbols (tensor P̃ has such a form, for example, in the case of spherical cav-
ity). The dynamically asymmetric satellite is considered, whose moments of inertia, for certainty,
satisfy the inequality A1 > A2 > A3. We assume that the angular velocity ω of the satellite motion
about the center of mass is significantly larger than the angular velocity ω0 of the orbital motion, i.e.
ε = ω0/ω ∼ A1ω0/G << 1.

In the present paper, we assume that the resistance torque Lr can be represented as Lr = Iω where
the tensor I has constant components Ii j in the body-fixed frame [3, 4]. We assume that the medium
resistance is weak and has the order of ε2, ∥I∥/G0 ∼ ε2 << 1, where ∥I∥ is the norm of matrix of
the resistance coefficients and G0 is the satellite angular momentum at the initial time. It is supposed
in the paper, that the cavity is filled with a high-viscosity fluid, i.e. ϑ >> 1

(
ϑ−1 ∼ ε

)
, the cavity’s

shape is spherical, then [3]

P = Pdiag(1,1,1),P =
8πρa7

525ϑ
(2.7)
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Here ρ and ϑ are the density and kinematical coefficient of viscosity of fluid in a cavity, respectively,
a is the cavity radius.

The gravitational constant µ is proportional to the squared angular velocity of orbital mo-
tion ω0, i.e. µ ∼ ε2. Therefore, to an accuracy of quantities of the second order of smallness(
P ∼ ε2,∥I∥

/
G0 ∼ ε2

)
, and the projections of the torque of forces of viscous fluid in a cavity have a

form:

Lp
i =

P
A1A2A3

{
p
[
q2A2(A1 −A2)(A2 −A3 +A1)+ +r2A3(A1 −A3)(A3 −A2 +A1)

]
αi1+

+q
[
r2A3(A2 −A3)(A3 −A1 +A2)+ p2A1(A1 −A2)(A3 −A1 −A2)

]
αi2+

+r
[
p2A1(A3 −A1)(A1 −A2 +A3)+

+q2A2(A3 −A2)(A2 −A1 +A3)
]

αi3
}
, i = 1,2,3 (2.8)

The problem is formulated to study the evolution of satellite rotations over an asymptotically large
time interval t ∼ ε−2, on which the motion parameters essentially change.

3 Modified procedure of the averaging method

For the considered problem of solving system (2.1)-(2.3) at small ε over the time interval t ∼ ε−2

we apply the modified scheme of the averaging method [3, 9, 10]. Consider the unperturbed motion
(ε = 0) , when the torques of applied forces are zero. In this case the rotation of the rigid body is an
Euler-Poinsot motion. The variables G, δ, λ, T and ν become constants, and φ,ψ and θ are functions
of time t. The slow variables in the perturbed motion are G, δ, λ, T and ν, while the fast variables are
Euler angles φ, ψ, and θ. Consider the motion under the condition 2TA1 ≥ G2 > 2TA2 corresponding
the case in which the trajectories of the angular momentum vector surround the axis Oz1 of the
maximal moment of inertia A1 [11]. We introduce the quantity

k2 =
(A2 −A3)

(
2TA1 −G2

)
(A1 −A2)(G2 −2TA3)

(
0 ≤ k2 ≤ 1

)
. (3.1)

In the unperturbed motion, it is a constant, namely, the modulus of the elliptic functions describing
this motion. For constructing the averaged system of the first approximation we substitute the solution
of the unperturbed Euler-Poinsot motion ref8 into the right-hand sides of equations of motion (2.1),
(2.3) and perform averaging over the variable ψ and then over the time t with the dependencies of
φ and θ on t [3] taken into account. The previous notation for the slow variables δ, λ, G and T is
preserved. As a result, we get

dG
dt

=− G
R(k)

{I22 (A1 −A3)W (k)+ I33 (A1 −A2)×

×
[
k2 −W (k)

]
+ I11 (A2 −A3) [1−W (k)]} (3.2)

dT
dt

=− 2T
R(k)

{
I22 (A1 −A3)W (k)+ I33 (A1 −A2)

[
k2 −W (k)

]
+

+
(A1 −A2)(A1 −A3)(A2 −A3)

S(k)

[
I33

A3

[
k2 −W (k)

]
+
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+
I22

A2

(
1− k2)W (k)

]
+

I11

A1

(A2 −A3)R(k)
S(k)

[1−W (k)]
}
−

−4PT 2(A1 −A3)(A1 −A2)(A2 −A3)

3A2
1A2

2A2
3S2 (k)

×

×
{

A2(A1 −A3)(A1 +A3 −A2)
[
(k2 −1)+(1+ k2)(1−W (k))

]
+

+A1(A2 −A3)(A3 +A2 −A1)
[
(k2 −2)W (k)+ k2]+

+A3(A1 −A2)(A1 +A2 −A3)
[
(1−2k2)W (k)+ k2]} ,

dδ
dt

=−
3ω2

0
2G

β2β3N∗,
dλ
dt

=
3ω2

0
2Gsinδ

β1β3N∗

N∗ = A2 +A3 −2A1 +3
(

2A1T
G2 −1

)[
A3 +(A2 −A3)

K(k)−E(k)
K(k)k2

]
,

W (k) = 1− E(k)
K(k)

,S(k) = A2 −A3 +(A1 −A2)k2,

R(k) = A1 (A2 −A3)+A3 (A1 −A2)k2.

Here, K (k) and E (k) are the complete elliptic integrals of the first and second kind, respectively
[12]. By differentiating the expression for k2 (3.1) and by using the first two equations in (3.2), we
obtain the differential equation

dk2

dt
=

S (k)
T (A1 −A2)(A1 −A3)(A2 −A3)

[
R(k)

dT
dt

−S (k)G
dG
dt

]
. (3.3)

The expression in braces on the right-hand side of the equation for G in (3.2) is positive (for
A1 > A2 > A3), because the inequalities (1− k2)K ≤ E ≤ K are satisfied [3]. The coefficient of each
Iii is a negative function of k2, and moreover, all of them cannot be zero simultaneously. Since G > 0
, we have dG

dt < 0; i.e. the variable G strictly decrease for any k2 ∈ [0;1]. The expressions in curly
brackets of the right-hand side of equation (10) for T is positive (for A1 > A2 > A3), because the
inequalities (1− k2)K ≤ E ≤ K are valid. Therefore, dT

dt < 0 since T > 0 , i.e., the variable T strictly
decreases for any k2 ∈ [0;1].

Consider the system consisting of the last two equations in system (3.2) and equation (2.3).
They can be written as

δ̇ = ω2
0∆(ν, δ, λ), λ̇ = ω2

0Λ(ν, δ, λ),ν = ω0t

Here ∆ and Λ are the coefficients on the right-hand sides in the last two equations in (3.2), δ and
λ are slow variables, and ν is a semislow variable.

We obtain a system of special form, which we solve by a modified averaging method [10]: After
the averaging, we have

.

δ = 0,
.

λ =
3ω2

0N∗ cosδ
4G

. (3.4)

We note that the action of the applied forces does not change the angular velocity δ and that deviation
of the vector G from vertical remains constant in this approximation. The numerical integration was
performed for the initial conditions G(0) = 1, k2 (0) = 0.99, δ(0) = 0.785rad and λ(0) = 0.785 rad
and for the following values of the principal central moments of inertia of the body: A1 = 8, A2 =
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5,6,7, and A3 = 4. The values of the principal central moments of inertia of the body are: I11 = 2.322,
I22 = 1.31, I33 = 1.425 or I11 = 2.6, I22 = 3.0, I33 = 0.5.

The initial value of kinetic energy was found from the equality

T =
G2 (0)S

(
k2(0)

)
2R(k2(0))

. (3.5)

Fig. 2

Fig. 3

The plots of kinetic energy change have the form presented in Fig. 2. Curves 1,2,3 correspond
to various values of A2 = 5,6,7. Numerical analysis shows that the functions G(t) and T (t) are
monotone decreasing (Fig. 2, 3).This conclusions coincide with results of analytical discussions after
the formula (3.3).

Figure 4 presents the plots of change of the angle λ of orientation of the angular momentum
vector for various values of satellite’s moments of inertia. Curves 1,2,3 correspond to various values
of A2 = 7,6,5 constant values A1 = 8, A3 = 4. As the value of the moment of inertia A2 decreases
with time, the curvature of function grows.
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Fig. 4

4 Conclusion

The system obtained after averaging over the Euler-Poinsot motion and applying the modified averag-
ing method, is analyzed. The analytical study and numerical analysis are performed. The orientation
of the angular momentum vector in the orbital frame of reference is determined. In the approxima-
tion under study, the perturbed motion of the body consists of a fast Euler-Poinsot motion about the
angular momentum vector and a slow evolution of the parameters of this motion. The angular mo-
mentum and the kinetic energy decrease and their variation depends only on the resistance torque. In
the first approximation of the averaging method, the motion of the angular momentum vector G about
the vertical on the orbit plane is described by the last two equations of system (3.2). In the second
approximation of the averaging method, the deviation of the angular momentum vector from vertical
remains constant, and the angular velocity of rotation in this case is variable.
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