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DEFLECTION AND BENDING MOMENTS AMPLITUDE DISTRIBUTION AT THE FORCED 
OSCILLATIONS OF THE EULER-BERNOULLI BEAM  

Yurii KRUTII, Nikolay SURYANINOV 

Abstract: The paper considers forced oscillations of a simply supported Euler-Bernoulli beam with inner inelastic resistance. Maximum values of non-dimensional amplitudes of 
bending moments and deflections which are invariants with respect to dimensional parameters of beam are calculated. For beams with any dimensional parameters calculation 
of the maximum amplitudes corresponding to the set frequency of forced vibrations, reduces to multiplication by appropriate dimensional factor already calculated invariant 
dimensionless values. In a specific example, a comparative analysis of accurate amplitude values for dynamic bending moments and deflections is calculated according to the 
author's method, with the same calculation in the ANSYS program complex. Values of the amplitudes in the vicinity of the resonance frequencies are clarified. 
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1 INTRODUCTION 

One of the major problems in the theory of oscillations 

of elastic systems is the study of the influence of external 

and internal resistances to oscillation processes. The 

calculations on the free oscillations consist in definition of 

own frequencies and forms of oscillations, as well as 

calculations on forced vibrations away from the resonance 

zones. The resistance forces are often neglected. This is due 

to the fact that when such calculations accounting the forces 

of resistance do not significantly influence the final result. 

Another thing is calculation of oscillation near resonance. 

This calculation requires the consideration of the resistance 

forces, since their effect is appearing in the greatest 

measure.  

Effect of external and internal resistance to oscillations 

is different and depends on many factors: the oscillatory 

characteristics of the system, the material of which the 

elements of the system are made, parameters of 

environment. However, in this case, internal resistance of 

inelastic material is of particular importance. 

2 BACKGROUND AND ANALYSIS OF RESEARCH 

Presence of internal friction in the material was firstly 

found by Coulomb in experiments with a torsion balance. 

The study of internal friction involved W. Thomson. It was 

established experimentally that the resilient material does 

not strictly follow Hooke’s law even if the elastic 

deformations within the limits of elasticity. This explains 

the internal energy loss fluctuations. 

Many scientists talk about the importance of internal 

friction in the material studies conducted in the beginning of 

the 20th century. Experiments of Guye on the internal losses 

in the material during torsional vibration of metal wires 

showed a completely insignificant role of air friction as 

compared with losses in the metal. Rowett, exploring 

damping vibrations in machines, found that the share of 

domestic energy dissipation in the material accounts for at 

least two-thirds of all losses during vibration. 

In the dynamic structural analysis, the hypothesis of 

Kelvin-Voigt, which is based on the idea of the viscosity of 

solids, is widespread when taking into account the internal 

resistance of inelastic material [1, 2]. The internal friction 

proportional to the velocity was used by the founders of the 

applied theory of vibrations A.N. Krylov [3] and 

S.P. Timoshenko [4]. 

However, as it is well known [2], the Kelvin-Voigt’s 

hypothesis in its pure form has a number of drawbacks. The 

main point is the fact that the hypothesis leads to a 

conclusion about the frequency-independent internal 

friction in the material, which contradicts the experimental 

data. This disadvantage is eliminated by taking the 

corrected Kelvin-Voigt hypothesis, according to which the 

damping is taken into account in proportion to the strain 

rate, divided by the oscillation frequency [2]. 

Among the fundamental studies on this issue, 

particularly noteworthy are the works of A.N. Krylov [3], 

S.P. Tymoshenko [4], J.G. Panovko [5] and E.S. Sorokin 

[6]. 

Current studies are characterized by the extensive use 

of computer methods of mechanics. Works related to 

considering variable mass for different kinds of friction are 

published by V.P. Olshansky and S.V. Olshansky [7, 8]. 

The work of N.N. Berendeev is devoted to the problem of 

the influence of the internal friction on the system of forced 

oscillations [9]. 

3 MAIN CHAPTER 

3.1 The main symbols and formulas 

Consider the forced harmonic oscillations of a hinged 

beam internal forces taking into account the inelastic 

resistance. The general scheme of the oscillation is shown in 
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Fig. 1. Fig. 2 shows a diagram of forces acting on the 

oscillations of the beam element. 

Figure 1 Forced transverse vibrations of a rod 

Figure 2 Driving forces acting on the rod element 

The following designations are accepted: 

( , ) sinq x t q t   external dynamic load, where q   

constant amplitude,    the frequency of the disturbing 

force; m  the intensity of the distributed mass (mass per 

unit length) of the rod; ( , )y x t   lateral movement of the 

point with the coordinate axis of the rod at the time 

(dynamic bending); ( , )x t   dynamic rotation angle; 

( , )M x t   dynamic bending moment; ( , )Q x t   dynamic 

shear force; ( , )r x t   the intensity of the internal forces of 

resistance; 
2

2
( , )

y
f x t m

t


  


 the intensity of the inertial 

forces that arise in the course of the oscillation (the power 

of D'Alembert). 

Assuming, according to the corrected hypothesis of 

Kelvin-Voigt [1, 2], 

5

4
( , )

y
r x t EI
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, 

the equation of forced oscillations of the beam can be 

written as [1, 2] 

4 2

4 2
1 sin

y y y
EI m q t

t x t






   
   

   
,    (1) 

where    inelastic resistance coefficient (dimensionless 

constant for a given material); EI   the bending stiffness of 

the beam. To this we add the equation as defined boundary 

conditions: 

(0, ) 0; (0, ) 0; ( , ) 0; ( , ) 0y t M t y l t M l t    .     (2) 

In the absence of the scientific literature of the exact 

solution of the Eq.(1), for the study of forced oscillations of 

the beam based on the internal resistance to the present, as a 

rule, we used approximate methods. An exception may be 

the publication of M. Abu-Hilal [10], where the definition 

of the dynamic deflection of the beam is based on the 

method of Green's functions. 

In [11] an exact solution of the Eq. (1) and fully defined 

dynamic parameters of the beam is found. In particular, 

formulas for the deflection and bending moments  

1 2( , ) ( )sin ( )cosy x t y x t y x t            (3) 

1

2

( , ) ( )(sin cos )

( )(cos sin ),

M x t M x t t

M x t t

  

  

  

 
   (4) 

where ( ), ( ) ( 1,2)k ky x M x k    the so-called constituent 

functions of their parameters. These functions with 

boundary conditions (2) at a point 0x  , defined by the 

formula [11]: 

3
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where 
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It is important to note that the parameters ,L   and all 

functions (7)(10) are dimensionless. 

Constituent functions (5), (6) represented in a complex 

form [11]: 

1 2 1 2 2

3 4
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where 

,1 ,2( ) ( ) ( ) ( 2,3,4,5)n n nX x X x iX x n   , 

2
4 4,1 4,2( ) ( ) ( )K X x X x iX x   . 

3.2 The dimensionless amplitude of dynamic deflections and 
bending moments 

Unidentified initial parameters 1 2(0), (0)  , 

1 2(0), (0)Q Q  are determined from the boundary conditions 

(2) at the point x l . These boundary conditions on the 

basis of formulas (3), (4) are equivalent to 

1 2 1 2( ) 0,   ( ) 0,   ( ) 0,   ( ) 0y l y l M l M l    , 

and their implementation, by the formulas (12), (13), leads 

to a system of equations: 
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Hence we find the complex initial settings: 
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To determine the required initial parameters 

1 2 1 2(0), (0), (0), (0)Q Q   allocate the real and imaginary 

terms in the right-hand sides of the formulas (14), (15). The 

result 

3
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where ,k kH S   dimensionless constants, calculated 

according to the formulas: 
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Substituting the values of the initial parameters in the 

formula (5), (6) we have: 

4
*

2(1
( ) ( )

)
k k

E

ql
x

I
y y x


 ;         (16) 

2
*

21
( ) ( ) ( 1,2)k k

ql
M x M x k





 ,         (17) 

16 TECHNICAL JOURNAL 11(2017)1-2, 14-20 



Yurii KRUTII, Nikolay SURYANINOV: DEFLECTION AND BENDING MOMENTS AMPLITUDE DISTRIBUTION AT THE FORCED OSCILLATIONS OF THE EULER … 

where * *( ), ( )k ky x M x   dimensionless functions, which have 

the form 

*

1
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To study the vibrations, the formula, which clearly 

highlighted the amplitude function, will be more 

convenient. Rearranging equation (3), (4) to a desired form, 

taking into consideration the representations (16), (17) we 

finally obtain: 

( , ) Am ( , )sin( ( ))yy x t y x t t x   ; 

4
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; 
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   ; 

( , ) Am ( , )sin( ( )) MM x t M x t t x   ; 
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; 
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1 2 2 1
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. 

As can be seen, the formula for the amplitude contains 

dimensionless factors ( )y x  and ( )M x , that is independent 

of the load. This factors up to size ratio 
4

2(1 )

ql

EI
and 

2

21

ql


 it defines the main forms for the dynamic deflection 

and dynamic bending moment. The functions ( )y x  and 

( )M x  can also be interpreted as a dimensionless amplitude. 

The maximum value of the amplitude will obviously 

be achieved in the middle of the beam, i.e. 

4

2
max Am ( , )

2(1 )

ql l
y x t y

EI

 
  

  
,  (18) 

2

2
max Am ( , )

21

ql l
M x t M



 
  

  
.   (19) 

Thus, to determine the maximum amplitude, it is 

necessary to calculate the corresponding value of the 

dimensionless amplitude in the middle of the beam. This 

will represent a special interest in the calculation of the 

resonance zones, when the frequency   of forced 

oscillations will be located in the vicinity of the frequency 

of free vibrations of the beam. 

As is known [1], for the frequency of free oscillations 

of the beam, excluding the resistances, there is the formula 

 

2
( 1,2,3,...)

j

j

K EI
j

ml
   ,   (20) 

where 
jK   dimensionless coefficients of free oscillations. 

In the case of simply supported beam 2( )jK j . 

As the frequency of forced oscillations set the following 

values: 

in the interval 10     we believe 

1
( 1,2,3,...,10)

10
k k


   ;

in the interval 1 2     we believe 

2 1

1 ( 1,2,...,10)
10

k k
 

 


   ; 

in the interval 2 3     we believe 

3 2

2 ( 1,2,3,...,10)
10

k k
 

 


   ; 

in the interval 3 4     we believe 

4 3

3 ( 1,2,3)
10

k k
 

 


   . 

Substituting here instead of frequency 
1 2 3 4, , ,     their 

values (16), we obtain the representation 

*

2

K EI

ml
  ,  (21) 

where *K   dimensionless ratio of forced oscillations for 

which we have 
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2 12
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(9 0,7 ) , when
10

( 1, 2,3).

k k

k k

K k k

k

k k

k


 

 
  

 
  

 
  







  



   

 


   





 

TEHNIČKI GLASNIK 11(2017)1-2, 14-20 17



Yurii KRUTII, Nikolay SURYANINOV: DEFLECTION AND BENDING MOMENTS AMPLITUDE DISTRIBUTION AT THE FORCED OSCILLATIONS OF THE EULER … 

When this parameter L , determined by the first of the 

formulas (11), taking into account (21), we obtain 
*

24 1

K
L





. 

Tab. 1 shows the results of calculations of the 

dimensionless deflection and bending moment amplitudes 

in the middle of the beam, corresponding to different values 

of coefficient of forced oscillation *K . Especially note that 

these values are invariant relative to dimensional values 

, , ,l EI m q  and depend only on beams ends restraints. In 

fact, they describe the very essence of the phenomenon. 

Table 1 Maximum values of dimensionless amplitudes 

K* 
For deflection For bending moment 

y(l/2) M(l/2) 

0.1π2 0.013204 0.127292 

0.2π2 0.013614 0.131360 

0.3π2 0.014358 0.138729 

0.4π2 0.015546 0.150496 

0.5π2 0.017393 0.168793 

0.6π2 0.020338 0.197974 

0.7π2 0.025397 0.248102 

0.8π2 0.035476 0.347992 

0.9π2 0.062745 0.618348 

π2 0.148025 1.466401 

1.3π2 0.018987 0.191677 

1.6π2 0.008483 0.087690 

1.9π2 0.005097 0.054210 

2.2π2 0.003483 0.038293 

2.5π2 0.002564 0.029264 

2.8π2 0.001982 0.023597 

3.1π2 0.001587 0.019803 

3.4π2 0.001306 0.017153 

3.7π2 0.001099 0.015250 

4π2 0.000941 0.013865 

4.5π2 0.000752 0.012349 

5π2 0.000622 0.011532 

5.5π2 0.000532 0.011248 

6π2 0.000468 0.011453 

6.5π2 0.000426 0.012213 

7π2 0.000402 0.013748 

7.5π2 0.000401 0.016610 

8π2 0.000434 0.022275 

8.5π2 0.000539 0.035211 

9π2 0.000629 0.054233 

9.7π2 0.000185 0.025754 

10.4π2 0.000051 0.013671 

11.1π2 0.000017 0.009066 

Fig. 3, 4 are graphs of the maximum amplitude of the 

dimensionless deflection and bending moment on the 

coefficient of beam forced vibrations. As can be seen, the 

highest values of the amplitudes are achieved when the 

value of the coefficient of oscillations is π2, which 

corresponds to the frequency of free oscillations ω1. 

Figure 3 Dependence of the dimensionless deflection amplitude of the oscillation 
rate 

Figure 4 Dependence of the dimensionless bending moment amplitude of the 
oscillation rate 

Thus, according to the formulas (21), (18), (19) the 

calculation of the maximum amplitudes of the dynamic 

deflection and bending moments of the beam caused by 

external dynamic load ( , ) sinq x t q t  reduces to 

multiplication dimensionless value * , ,
2 2

l l
K y M

   
   
   

, 

contained in Table 1, on the corresponding dimensional 

multipliers 
4 2

2 2 2
,

(1 )

1
,

1

qlI

m EI

E ql

l   
. 

3.3 Example 

Let us find the distribution of the amplitudes of the 

dynamic deflection and bending moments at the hinge beam 

for given values of higher frequency of forced oscillations. 

Inelastic material resistance factor is γ = 0.089. The force of 

inertia that occurs during the equipment operation is 

assumed to be q = 20 kN/m, mass per unit length of the 

beam m = 2.5 kNs2/m2, bending stiffness EI = 79615.11 

kNm2. 
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With such design data, the first four frequencies of 

oscillation beams excluding resistance according to (20) are 

equal: 

ω1 = 48.9243 s−1; ω2 = 195.6974 s−1; ω3 = 440.3191 s−1; 

ω4 = 782.7895 s−1. 

To calculate the required amplitude of dynamic 

deflections and bending moments corresponding to a given 

frequency θ, according to the proposed method, we multiply 

the values that appear in the first, second and third columns 

of Tab. 1, respectively, on the dimensional ratios 

kNm. 3417714
1

m, 32300
)1(

  ,s 95714
1

2

2

2

4
1

2

.
ql

.
EI

ql
.

m

EI

l







 





Results are shown in Tabs. 2 and 3. For comparison, the 

results of calculations for a given beam finite element 

method are obtained using ANSYS [12] software package. 

Table 2 Maximum values of dimensioned amplitudes 
Frequencies 

θ, s−1 

For deflection, m 

The author’s method ANSYS 

4.8924 0.004265 0.004312 

9.7849 0.004398 0.004402 

14.6773 0.004638 0.004683 

19.5697 0.005022 0.005074 

24.4622 0.005618 0.005691 

29.3546 0.006569 0.006611 

34.2470 0.008204 0.008316 

39.1395 0.011459 0.011700 

44.0319 0.020267 0.020211 

ω1 = 48.9243 0.047813 0.041122 

63.6016 0.006133 0.005918 

78.2789 0.002740 0.002212 

92.9562 0.001646 0.001533 

107.6336 0.001125 0.001094 

122.3109 0.000828 0.000800 

136.9882 0.000640 0.000637 

151.6655 0.000513 0.000510 

166.3428 0.000422 0.000412 

181.0201 0.000355 0.000349 

ω2 = 195.6974 0.000304 0.000293 

220.1595 0.000243 0.000213 

244.6217 0.000201 0.000180 

269.0839 0.000172 0.000143 

293.5461 0.000151 0.000139 

318.0082 0.000137 0.000111 

342.4704 0.000130 0.000100 

366.9326 0.000129 0.000099 

391.3947 0.000140 0.000100 

415.8569 0.000174 0.000114 

ω3 = 440.3191 0.000203 0.000112 

474.5661 0.000060 0.000058 

508.8132 0.000017 0.000013 

543.0602 0.000005 0.000005 

Table 3 Maximum values of dimensioned bending moments amplitudes 
Frequencies 

θ, s−1

For bending moment, kNm 

The author’s method ANSYS 

4.8924 90.9303 90.9393 

9.7849 93.8362 93.8732 

14.6773 99.0996 99.1469 

19.5697 107.5053 107.9006 

24.4622 120.5757 120. 9934 

29.3546 141.4211 142.1433 

34.2470 177.2297 180.0014 

39.1395 248.5850 256.4465 

44.0319 441.7116 480.9984 

ω1 = 48.9243 1047.5114 1210.1123 

63.6016 136.9229 134.4555 

78.2789 62.6410 60.9702 

92.9562 38.7246 38.3356 

107.6336 27.3544 26.7447 

122.3109 20.9048 20.8733 

136.9882 16.8566 16.8341 

151.6655 14.1464 14.0050 

166.3428 12.2530 12.0405 

181.0201 10.8938 10.9666 

ω2 = 195.6974 9.9044 9.8888 

220.1595 8.8213 9.0403 

244.6217 8.2375 8.7641 

269.0839 8.0346 8.7445 

293.5461 8.1815 11.2345 

318.0082 8.7243 13.1477 

342.4704 9.8206 19.2345 

366.9326 11.8649 28.4332 

391.3947 15.9119 45.3221 

415.8569 25.1526 91.3576 

ω3 = 440.3191 38.7406 111.3787 

474.5661 18.3970 76.3744 

508.8132 9.7656 41.3222 

543.0602 6.4760 26.8564 

4 CONCLUSIONS 

The maximum values of the amplitudes of the 

dimensionless dynamic deflections and bending moments 

are calculated. Analysis of the results shows that the sharp 

increase in the amplitude values of deflections and dynamic 

bending moments occur in the resonance regions 

corresponding to the first natural frequency of oscillation. 

At higher frequencies this effect is practically absent. At 

frequencies of the external load, close to the third natural 

frequency, there is quite a significant difference in the 

results obtained by the author’s and the finite element 

method. Values obtained by the author, should be regarded 

as accurate, since they are obtained by the exact solution of 

the original differential equation by the method of direct 

integration. 
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