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Abstract The unbounded solution, at the points where the boundary conditions change, for a
mixed Sturm-Liouville problem of the Dirichlet-Neumann type can be obtained using the method
of the integral equation formulation. Since this formulation is usually reduced to an infinite alge-
braic system in which the unknowns are the Fourier coefficients of the unknown unbounded entity,
a study of ¢,-solutions imposes itself concerning the influence of the truncation on such systems.

This study is achieved and the well-known theorem on the £>-solutions of the infinite algebraic sys-

tems 1s generalized.
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1. Introduction

The formulation of mixed Sturm-Liouville problems [1-4] into
a Cauchy type integral equation can be successfully applied to
Just obtain the solutions corresponding to which the necessar-
ily continuous quantities, like temperature or displacement,
etc., are Hélder-continuous at the points where the boundary
conditions change. On the other hand, at such points, qu
ties like heat flow and normal contact stress, for example
physically as well as mathematically [5] be unb
tain the solutions which designate these inter




ns: The r-continuity imposed on the
1 of the solution on the boundary, to permit there a
' representation for other quantities, may throw out
solutions that involve singularities. Further, the unknown
function of the integral equations used therein represents a
continuous quantity, the sole function which may be obtained
in a closed form. The other quantities in the problem can be

obtained as restrictions of a series and the singularities, if
any, are practically lost.

In this work we show th
bounded solutions of Sturm-
tained by means of the integ

[ the

at the physically important un-
Lioville problems can also be ob-
ral equation formulation. This is
achieved by carrying out a modification so that the problem
is converted (o a Hilbert-type integral equation in which the
unknown function fepresents quantities that may be un-

bounded. In this way the form of the singularity can be defi-
nitely obtained. The typical example considered here is the
periodic Sturm-Lioville problem in a rectangular region sub-
Jected at one edge to a Dirichlet-Neumann condition.

In Section 2 we outline the procedures of the formulation.
The complex Fourier transf: orm

24 X
o -21; / : il B L ey ZTF s
is used to reduce the problem to a discrete problem and in turn
to a Hilbert-equation which is finally reduced to an infinite Sys-
tem of algebraic equations. The solution(s) of the later system
may be found in L(p > 4).

In Section 3 we prove that to any ei
there corresponds a unique solu
To this end we studied the e
systems.

Numerical verifications are
while the fifth and last section is
sults of this paper.

genvalue of the problem
tion of the algebraic system.
-solutions of the infinite algebraic

given in the fourth section,
devoted to summarize the re-

2. A typical example and its solution

The problem we shall use here to present the procedures is to
search for the even 27 periodic solutions of the problem
su+7u=0, inQc R (2.1)
subjected to the mixed boundary conditions:

=0 Non IR (2.2)
Oou

—=0. onl._ (2.3)
ay :

where

Q= (-mmn)x(0,1). I.={(x0)]x| < c},
= {(x,0):(~m )~ I.}, and I = {(x1),x| < n}.

The mixed boundary condition imposed in the lower side

» = 0 according to Egs. (2.2) and (2.3) can be replaced by
the two uniform and compatible ones:

on [,
on [_

u=g.(xy) = {O’

2.4)
undetermined, (

and

The restriction

ai);’ym=¢_(x;v) onl_uUr,

(2.6)

for all possible values of y belonging to the class of the integra-
ble functions. On Applying the finite Fourier transform with

respect to x to Eq. (2.1), the solution of the resulting equation
is

U,,(_V) = Auek"y = B"e-k,,_r‘

where

' VP —n? |n<y,
n ,_—nz = ?2,
Substituting this solution in the Fourier transform of the

boundary conditions (2.2) and (2.3) and then eliminating the

constants A4, and B,, we arrive at the following discrete prob-
lem [6] (see also the Refs. [1-4])

R"(y)d)"_(y) = n+(y)-

where

(2.7)
n| > y.

1 % g
kltanh k,. and &,, :;1—!/ O (X)e™ oy, * AD.B)

The solutions of problem
then

R.(y) =

(2.1) along with condition (2.5) are

u(x,y:y) = -Sl—n(;"(:—(l)s—?ﬂltﬁo;(y)

sin (\/FT:;Z(I - y)) cos(nx) =

VPR —nicos /R —n2 n- (1)

3 sinh (\/PT}Q(I —~ y)) cos(nx)
s o

D, (»),

(2.9)

hich system (2.8) has
problem (2.8) can be

where y stands for any possible value at w

a solution @,.(y):n € N*. The discrete
rewritten in the more convenient form:

sgn (" + %) ¢u— (7) -+ rn(}')¢u~(}’) = “"¢"+()'), nez

(2:10)
where

L) = e (3) = s (n + %) = (%) :

Strictly speaking, problem (2.10) relates between the deriva-
tives of both functions ¢, (x;). The n Fourier component
of a derivative is equal to in times the sa

me component of its
antiderivative. Thus the coefficients @y , (y) are lost in problem
(2.10), and it does not provide with the connection between
them and the other components of the unknown functions
@+ (x;9). It is easily seen that the equ

ation in problem (2.10)
corresponding to n = 0 is trivial. Applying the inverse Fourier
transform

2.11)




to the discrete problem (2.10), using the relation [6]

=~ l R ‘; i
ng,,(ﬁg),,,__,,-. =_/ 2-lve ),

e Ry O =t

and taking into account that @, (x3) = 0 on I'. . the discrete
problem (2.10) is reduced to

A A=o
l [ O—'_“'—"L—dr + Y L@, ()™ =0, xer, (2.12)
RJ ., & —e& s
but since
- 1 X
S e 7
C'——'-j_:(l 1\.0(( ) )) (_13)

we get

Do_(y) - :L / cot (f—_l—'\-)cp_(::;'\dr

®J_.

=@y (y) — QiZF,.(Dn, () sin nx.
=l

Again, the explicit zero-order coefficient ®y_(y) is deleted, and
we finally have

2—17': : cot (!_T'\)w_(r.',') dt

o0

5 3Zn(1-1¢>n-(:") Sin(mx)es v ell—r.d).

=]

(2.14)

The Hilbert-type equation (2.14) can be inverted into the class
of integrable functions [7]. with the result

1 X -
9-[xy) = X0 (00 oS lgfn(:')¢m('.') V..(x)) (2.15)
where the constant a, reflects the fact that this equation is suf-

ficient to determine ©-(x:y) only to within an additive
constant,

X(x) = \/2(cos x — cos ¢), and

G 1 [ X(t)sinnt

=

5 T 2.16

27 ] . sin (52) (216)
The explicit expression of the integrals V,(x) are

- 1

B = Z{u,,,m(cosc) cos (m +§).\xuﬂ(cos A=l

m=0

iy (cosc) = —cosc (2.17)
P _>(cosc) — Py(cose
and py(cosc) = 2 ) t )‘ =2
2k —1
where P,(cosc) are the Legendre polynomials
1 [ cos(n+1)x

=— — = . 2.18

P,(cosc) = /; X&) X (2.18)

The application of the finite Fourier transform to Eq-1(2:15)
leads to the algebraic system

‘p;-(}') = ﬂoNof 5 ZZF,,(‘)’)N,.1¢,,_()'), £e NTw (2-19)
n=|

and
1 [ cos(fx)cos(x/2)
Nor =g

:%(P[(cos c)+ Py_(cosc)) £€e Nt (2.21)
These relations hold for ¢ € (0,7). In contrast to what we have
emphasized above the first equation of system (2.19) deﬁx?es-
®o_(y) in terms of the other components to within an additive
constant and this does not represent a contradiction if this sys-
tem is reducible. Indeed, from definition (2.20)

Niop=0,neN, (2.22)
and hence

ap = 29,. (2.23)
Thus system (2.19) is reduced to

(Df* (T) = 2¢0N0[ E 22[‘"(}')]\’"!(1)"—()’), [ € r\\J (224)

n=1

Again, system (2.24) lacks information about the component
®o_(y). Indeed the designation of the values of y at which its
truncation at any order N may have solutions, i.e. the zeroes
of the corresponding determinant. implies the consideration
of an additional component @y . 1, (y) since this determinant
isoforder N + 1. A quantity which was preliminary excluded
cannot be restored merely through the frame of the method or
its self-consistency. In order to repair this erratic attitude we
return to the original problem from which it is clear that the
condition u(0,0,7) = 0 is inevitable as long as ¢ > 0. Ex-
pressed in terms of the solution (2.9) this yields

Ro(1)®0_(3) + 25 "R,(1)0,_ () = 0

n=|

(2.24

which is an alternative €quation to that lost on multiplying the

first equation of discrete problem (2.8) by zero. By the trunca-
tion of the infinite algebraic system at order N we mean that
obtained respectively from (2.24') together with the first N
equations of (2.24). As in Refs. (3.4], it is a simple matter to
verify that if y is a zero of the determinant of the algebraic sys-
tem truncated at order N, then its corresponding solution to-
gether with @, = 0,7 > N + 1, defines through (2.15) an
exact solution of Eq. (2.12) truncated such that [nl < N + 1,




zeroes 3. Table 1 reveals some idea about
imilarly if y is an eigenvalue of the problem,
ing solution D, _(y) . n € N* to within a multi-
ative factor and that of the problem thereby can also be
ought of as limiting case of the corresponding solution of
the truncated system. To obtain these approximate unknowns
Do () P1_(3), ..., Dn_(¥), We can set one of them equal 1/2,
for example ®y(y). The other components @, (y),n =

D2l ruN can immediately be obtained by solving the reduced
inhomogeneous system:

N
Pe()+2) LO)Nu®u (1) = Noty £=1,2,... N, (225)
n=|

while the truncation of (2.24

is appropriate to recall tha
mated solution exists in

) will be automatically satisfied. It
t the above mentioned approxi-
general even when N increases indefi-
nitely since y is a zero of the determinant of the truncated
homogeneous system (2.24) and (2.24) but not that of its cor-
responding inhomogeneous one.

Now, the solution ¢_(x:y) belongs to L, space where [8]

4
L<p < 3 (2.26)
it follows that its Fourier representation is an £,-sequence
where [9]
P
=——>4,
P e (2.27)

Thus we have to investigate the justification of the truncation
applied to systems with solutions in ¢, rather than the special

case p = 2, that corresponds to the most familiar and widely
used L-space. In the next section we achieve this study by clo-
sely following the study in [10] for the special case p = p=2.

3. Infinite algebraic systems with £,-solutions

If the coefficients @, and b; are subjected to the conditions

> el <oo, B < oo, (3.1)
Jk=1 J=1

it is required to find the solution &, k € N where

Z|§k|p < 0o,
=

(3.2)
of the infinite algebraic system
By ey (33)
k=1
as a limit of the solution of the truncated system
éj—ﬂ.iajkékzbj (FElED s (3.4)
k=1

as N = oo. In this case the solution of system (3.4) can be con-
sidered as an approximation to that of system (3.3).
System (3.3) can be written in the form

= e R (R g R R R (3.3)

z=Hx (x={&}, z={n}. (3.6)

We define a complete subspace y = £, C ¢ as the set of t?]e-
ments of ¢ = y whose coordinates are equal to zero starting
from the (N + 1)'" coordinate. Moreover we denote the com-
plete finite dimensional Euclidean space #;, .by %- Thus, accord-
ing to the Banach theorem, a linear contlpuous opera.tor bo
mapping  in a one-to-one manner into 7 will has a continuous
inverse operator ¢6'. The extension ¢ of the ope{alor o on ¥
can be defined as ¢ = ¢P , where P is a projection opergtor,
=P mapping from y into 7. The extension ¢ associates
with x = {£,,} € € one element ¥ = ¢x = (G167,

Y é’l) E €J:‘
Obviously
el = ligoll = [|¢5"]| = 1. (3.7)
Now, system (3.4) can be written in the form
Kx=3%—JHx=¢y, K= doK¢;', and
H=¢,Hp;', (3.8)

where the operator H is defined by the truncated matrix

Ay = {a,,} (7= |.2.....N),

We use our notation to formulate a theorem [10] on the con-
vergence of the sequence of approximate solutions as follows:

Theorem 1. Ler ap operator K

=1+ H has a continuous
inverse operator and the following

conditions are satisfied
L. For any x € 3, we
2. ||Hx - X|| < By|Ix]],

- There exists y € X such that ||y — |z By,

4, iimerﬁ = |yl = limy_ B, = o' il = limy e B
by |l =0 d

have ||Heo — pHz|| < fl|x||,

Then for sufficiently large
convergence of the
holds. In addition

N Eq. (3.4) is solvable

and the
approximate solutions to (he exact

solution

flx* — %

S OBl90 | + 0.8, 15" ] + 845" ¢,
where %3, = o li‘,‘,, X isa

: _ solution of Eq. (3.5) and 7" is a solu-
tion of the equation

X=¢,'x,

ISR =R = T = I8,
H is a linear continuous operaror ingy:

We now prove that conditions 1, 2, and 3 are satisfied.
We have for any x

X Ox = (éllé‘Z“--aéNvO‘"‘) 62
2= ‘f’i’-\‘— Heyx, 2= Wity tih

N
Wj:Zajkfk~Zajk§k =0, (j:l,z,‘_"N).
k=1 k=1

Thus condition | is satisfied for B =0.

e tion 2, we take any x = {&,) € ¢ and set
X =ox], = (1, my, ... s M), then
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Fig. 1  The graph of the singular extension ol the Neumann data

P-(x,9%) on I,

the winding curve corresponds to the first 70

terms of 1ts Fourier representation, while the continuous curve is

oblained through its closed form in which the same number of

Fourier components are considered
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Fig. 2 The graph of the extension of the Holder continuous
Dirichlit data @ «(x,74) on I according to its Fourier represen-
tation in which the first 70 terms are considered

P, ()"f"'). n > 26 are approximately obtained through Eq
(2.25) in which N = 26, ®,_ are substituted by means of their
values and fis allowed to exceed 26. Some of the values thus
obtained are given in the table between brackets. Note that
they are almost the same which are directly obtained through
solving system (2.25) at N = 30. In fact. according to relations
(2.25). (2.11). and (3.12), the first neglected term in the expres-
sion of @ y.yy () 1s

2 a1y () N w1y, evt Pivin-(¥) < 0(.\#‘\.

It is clearly still so far from a
curve of @, (x,74), Fig. 2 obtained

moreover, this dotted curve conceals the singularity whatever
be the order of the truncation. The coefficients @, _(y4), 30 <
n < 70 are obtained by means of the above illustrated
approximation.

The continuous curve in Fig. | obtained through the expli-
ait formula (2.15) confirms the usefulness of the suggested
modification since it surmounts both of these shortcomings.

5. Conclusion

It has been shown through a concrete example that the integral
¢quation formulation of mixed Sturm- Liouville problems can
be modified to complete the definition of partially prescribed
conditions at one of the boundaries and concerned with quan-
tities that inevitably may become infinite at the points where
the boundary condition changes. This modification has the
advantage of extending the domain of solution to the class
of integrable functions and defining the singular solutions in
a closed form. It is reached by reducing the problem to a
homogenous Hilbert-type integral equation rather than the
Cauchy-type one used in Ref [1-4]

Since the closed form of the solution is defined in terms of
its Fourier components, the problem is further reduced to an
inhnmite homogenous system of algebraic equations and the
completion of the solution is encountered with some difficul-
ties. The justification of the truncation of a homogenous sys-
tem (operator) involving an additional unknown constant, as
in this case, may catastrophically influence the values of the
Fourier components through affecting the zeroes of the deter-
minant of the homogenous system truncated at any order. This
constant which is inherent in the solution of a Hilbert-type
integral equation could be defined in terms of the zero order
component and the justification could be achieved using a sim-
tlar 1dea to that followed in Refs. [3.4]. To this end, the well-
known theorem concerning the study of the truncation of the
inhnite algebraic system of /y-solutions [10] is generalized to in-
clude the general case since the Fourier components of a singu-
lar integrable function constitute an {,~sequence.
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