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Abstract. In this paper, we a

mulation of mixed plane boun
unbounded at the

pply a modification to the method of the integral equation for-

dary value problems so that it enables us to obtain the solutions

points where the boundary conditions change. Such

solutions are of great
physical interest The modific

ation is illustrated by means of a typical problem. As is it the case

in the original method proposed by Cherskii [1]

. the problem is reduced to an infinite system of
algebraic equations. The

Justification of the truncation of such systems has been established

1. Introduction

In 1961, Cherskii proposed the method of the

discrete Riemann problems for solving
stationary finite plane mixed problems (1]

This method, originally proposed for solving
stationary Dirichlet-Neumann problems, consists of reducing the problem to an integral

equation. The unknown of this integral equation is an extension of one of the partially
imposed conditions and is compatible to the other. It has become of wide applications
in several branches of mathematical physics [2]. Further, El-Sheikh could modify it to
solve initial Dirichlet-Neumann problems 13] (with Eckhardt) and [4). He also performed
another modification to the method for solving steady Dirichlet-Newton problems (5]
(with Gad-Allah) as well as initial Dirichlet-Newton problems [6]. Additionally, the
method has been applied to time dependent elastic contact problems [7). In all these
works, however, it is the extensions of physically continuous entities that was de.t,ermix:'ned
by means of the procedures followed in [1-7). On the other hand, solutions mvo]m
singularities at the points where the boundary r_ondnnon; ;hange are gf great pby'm'ca]
interest. For example, in the problems of heat ronductm-t_v. t.he Du@xlet Condition
represent the temperature which is always continuous, but if this condition changefs w
a Neumann one at some point on the boundary, the heat flow the later repreat-znta, is in
general discontinuous with probably an infinite jump there. Anoth?r example is usually
met in the contact problems of the theory of elasticity. The solution of such proia:
requires the determination of both the normal displacement as well as mﬂ

on the arc of contact. Again, the displacement is bounded every wheme | natmlr
stress may be unbounded at the end points of such arcs. It is this unboundedness
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n and mathematically it is known that discontinuities and /or

e ; . R y presented at points where
the boundary conditions change [8]. At this point, the determination of the solution(s)

involving singularities through the procedures followed in [1-7] is doubted. As already
pointed out above, in these works, the unknown functions in the integral equation to
which the problem was reduced are necessarily continuous. However, the solution of
such integral equations and/or the very form of itg corresponding discrete problem lead
to make assumption(s) about such unknown function. Thus other solutions which do il
satisfy these assumptions could have been exist and the solution(s) involving singularities-
for quantities other than these unknown functions may indeed be lost. In particular, the
physically important unbounded solutions may indeed be thrown out. For example [3],

the discrete problem to which the mixed Dirichlet-Neumann Sturm-Liuoville problem for
the reduced wave equation in the circle is

Pnt(7) = |n|q)n—(7) o Q|n|(7)q)n—(7)> (n € Z). (1.1)

Here ®,,_(v) and ®,,, () represent the Fourier components of the temperature p_ and
the heat flow ¢, on the circumference respectively, v is the parameter of separation of
variables and Q|,(7y) are well-defined coefficients. From this equation, it is clear that
the Fourier representation {®,,4(v)} of the heat flow is possible only if the temperature
function ¢_ is a Hoelder continuous one. Further, a discrete problem like (1.1) expresses
an unbounded solution for ¢, if any, as an infinite series and the singularity is practi-
cally lost in this way. It is then necessary to rearrange the discrete problem such that
the unknown function in its corresponding integral equation becomes the function that
can increase indefinitely and then search for the unbounded solution. To this end, the
procedures in [1-7] ceases to be applicable and modifications should be achieved.

In this work, the required modification is outlined through consideration of a typical
example. Namely, the propagation of harmonic heat waves in a cylinder due to two sym-
metric arc-sources of the form e~** f(#) while isolated every where else on the boundary.
This constitutes simultaneously the thermal part of the thermoelastic contact problem
of symmetric indentation of two punches in the form of circular segments into the ex-
terior surface of the cylinder. In a way similar to that followed in [1-7], this problem
is reduced to a discrete Riemann problem such as (1.1) but in which ¢, represents the
continuous temperature. Thus the problem is converted to a singular integral equation
with Hilbert kernel (rather than a Cauchy’s one) in which the unknown function is the
heat flow. The unbounded solution of this equation can simply be obtained and it can
be further reduced to an infinite system of algebraic equations in which the unknowns
are its Fourier coefficients. These coefficients are found in the space l,(p > 4). The error

occuring due to the truncation has been estimated.

2. The Problem and Its Integral Equation Formulation
The point of departure is the following heat equation
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T(L6;6) = e1(6),
oT(1,6;t i
_Lar'l =0, if @€l
IT(r,8;t)| < oo (2.4)

where 'y = [-a,a] U[r —a,7 + a], T = [-m, 7] \ ['1, ar is the thermal diffusivity and
f(6) is an even function with respect to .

The mixed boundary conditions (2.2) and (2.3) can be replaced by the two uniform
and compatible ones:

u(1,8) = f-(6) + ¢+ (0), =p-(6) (2:5)

where
T(r,8;t) = e~ *“*u(r, ),

fETL if6 €I,
#+1% = 1 undetermined if 8 € {7

() = undetermined if 8 € T’y
o 01 if@ e I'y,

_[f(8)if6 €Ty,
el g {o if6 € T,. (2.6)

From the definition of u combined with equation (2.1) we get

A'U. b E‘u. = 0.
ar
Applying the finite Fourier transforms with respect to 8 to this equation, the solution
of the resulting equation that satisfies (2.4) is

Un(r) == AnJ[n[('Yr)s (ﬂ € Z))

where o 1 /7
AR e —iné
P =22, U = 5 [ ulne)eag

=7
and Jj, are Bessel functions of the first kind. SubStlmt;ng-thls solution in the Fo
tra.nsforms of the boundary conditions (2.5) and eli ‘_ Am B sire ab theﬁgn urier
discrete Riemann problem
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an be rewritten in the form
Saer 1
| n®,4 = sgn(n + E)fbn_ ki o TAREE 1 (neZz-{0}), (2.8)
where T = sgnn + 3) ~ =) and . = 0( %),

T (Y

On multiplying (2.7) by n the first equation, involving &,_ |
equation restoring the hypothesis necessary for determining t
be obtained from the first of conditions (2.5) at & =

was lost. An alternative
he solution of (2.7) can

0 where it always holds for any
a € (0, 2], this yields
Jo(7) — Jn(7)
——P_ +2 b= f(0]. 2.9
yh(y) =) ) (29)
Performing the inverse Fourier transform
w -
WS o= Z Ppre™ =, (0) (2.10)
n=—oo
and using the formula
= 1 1 SRBioL (1)
. = e e _dt 211
W lsgn(n + 2)<I>n = /;,, " (2.11)

which can be found in [2] (taking into considerations that i (z) =0 as'0 € T1) we
reduce the discrete problem (2.8) to the singular integral equation

L naatd Bl O ok e
Er- (/:a 1 — ei(6-2) dt + [r— e e,'(g__tl)dtl = Z Bad e O (0)

(s n=-—oo
Taking into account that ¢_(6) is a m-periodic function the substitution t, = t+m leads

to the result
e /"+a p_(t1)dt _[0 p_(t)dt

> . S ei(6—t1) — be Bl E ei(f—t)

 andithe abp{e equation assumes the form

2w (Pe?
B T

dt= 3 Tnbn_c™ —if'(6).

n= ‘;u' o




1 as the odd property of I, the ;

ik e
L f_ cot(t — B)p_ (t)dt = -221‘ 8, sinnd + £'(6),

n=1
The final form of eq. (2.12) can be obta,med by takmg into consideration tha.t 1
functions ¢ (f) and f_(6) are symmetric about 6 = Z. Thus, expressing, for exa.mplq

the relation ¢_ (3 +y) = ¢—(% —y) in terms of its Fourler expansion

_(0)= i (I,n_eine

n=—oo

with one eye on the definition of ®,,_, we simply get the result

i

1% p_(8)e~"?df if n is even } (2.13)

0 if n is odd

and equation (2.12) becomes

=

% /a cot(t — )p_(t)dt = f'(0) — 2 i):l 2, ®2,_sin2n6,0 € (—a,a). (2.14)

3. The Reduction to Algebraic System

The Hilbert-type integral equation (2.14) can be inverted in the class of mtegrable
functions [9], with the result.

a0 cosf +2 > Ton®an_Va(6) — m(6) 85 (B4

n—1

il
_(8) == X—(o)-

where ag is a constant,

“ XO)F@Od
7 J_o sin(t — ) ‘.

X(8) = /2 (cos20 — cos2a), m(d) =

= Vo (6) = 1 [ X(t)sin2ntdt s
LS A 11 s e i

The explicit expressions of the integrals V;,(6) are
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"ef"wﬁnomiaﬂ defined by the formula

& e
o

a 1
e % /_ : cos(";:i;) ).’Bda:. (3.4

Note that m(6) can be expressed as a superposition of V,,(#). In order to define the
coefficients ®,,,_ in eq. (3.1) we substitute instead of p_(x) its expression according to
this equation in (2.13). Thus we arrive at the following infinite system of liner algebraic
equations

®3¢- = aoRe+2) T2nNpe®on_ — M, (e nNt) (3.5)
n=1
iy 1 [ V,(8)cos 208 1 [ cos 260 cosfdf
n(0) cos coS cos
Npy== | = —"74d9 R,=-
e - L5
and

1 f" m(6) cos2£0da' (3.6)

e

s
In view of (3.3) and (3.4) these coefficients can simply be found:

n
N = i Z Pn—m (€08 2a) [Pp_g(cos 2a) + P4 ¢(cos 2a)]

m=0

and 1
Fpi— 4 [Pe(cos 2a) + Py_y(cos 2a)]. (350)

Again M, can be expressed as a composition of Nyg, n =1, 2, - -.

‘4. The Truncation of the Algebraic System

m (3. can in general be solved only approximately, namely using the
tion, we set up function spaces and sequence spaces. The solution
4) i < p < 2[10]. Consequently the Fourier

) = ~£5[11]. Thus we will work in the space




(ii) Z (i |F2nNntl;£T)’ ; < 00,
=0 ﬁ:l
(iii) f: |Re|P < o0,
£=0

then the infinite system (3.5) has a unique solution in ¢,. The truncated system will also
have a unique solution and the following estimate holds

e — @V, <Q1[ Z (Zlen Npe| 7= 1) —]%+Q2 [Z;ZOQVHIRZP]P (4.2)

¢=N+1 n=1 El:o IRelp

where Q1 and Q> are constants.

We shall assume that the frequency w differs from those values for which the homo-
geneous system corresponding to (3.5) has nontrivial solutions. The fulfillment of the
second and the third conditions follows from (3.7) and (3.3) for n = ¢ together with the
formula

= ;Z+ . [Pr(cos2a)Ppyq(cos2a) — Py (cos2a)Py(cos 2a)];
n>1n#l (4.3)
together with the estimate (formula 22.14.9 of [13])
Py (cosa)| < (3)% Bl s e s (4.4)
w) +/nsina
- Thus, we have & B
| Nne| ~ T and Ry ~ e (4.5)

Therefore, conditions (ii) and (iii) are satisfied as p > 4. Recall that I’y = 0 (k—2),

Additionally, we have ¢

(N + 1)'%2 :
Formula (3.1) defines ¢_ () only to within an arbitrary additive factor, a cos . Th1§c :
mxght be expected since it follows entirely from knowledges concerning the derivative

 "_(6) rather than the function itself. In eq. (2.8), n®,4 are proportional to the
: compenents of <p¢ (8) In return, the solution of system (3 5) pwnde&

@ — @V, < (4.6)




rough system (3.5). Thus, the whole solution can practicaly be obtained by replac-
ing condition (2.9), of the selfconsistency, instead of the sole equation involving &,_ in
system (3.5), the first one. Analogous way was used in [7] (section 6, second way). In
this way, the solution of the N**-order truncation of (2.9) together with the equations
corresponding ton = 1,2,---, N + 1 provides the coefficients ®5,,n = 0,1,---, N ag well
as the constant a all together with a precision that becomes infinite as N — oo. The
approximate solution of problem (2.1)-(2.4) is easily shown to be

N
T(r,6;t) =e " [——Jo(yr) +2 Y —=2—Jp,(yr) cos2nd (4.7
oy Jo(7) o) n; 2n(7) )
where
) =1 (yr)[r=1. : (4.8)
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