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Abstract—The problem of time quasi-optimal deceleration of the rotations of a dynamically symmetric
rigid body is studied. It is assumed that the body contains a point mass connected to it with a strong
viscoelastic element (damper). The body is acted on by a small linear resistance torque of the medium
that is proportional to the angular momentum and a small control torque bounded by an ellipsoidal
domain. An approximate synthesis of control is proposed, and an asymptotic solution based on a pro-
cedure of averaging the precession motion over the phase is obtained; numerical integration is per-
formed. The main properties of the quasi-optimal motion are determined.

DOI: 10.1134/S1064230717020022

INTRODUCTION
The analysis of hybrid systems, i.e., systems containing elements with distributed and lumped param-

eters is of interest both for theory and applications. For systems containing quasi-rigid bodies, various
approaches were developed and constructive results were obtained. The models of quasi-rigid bodies
assume that their motion is in some sense close to the motion of rigid bodies. The compliance is taken into
account by introducing additional terms into Euler’s equations of motion for a fictitious rigid body. Rigid
bodies with internal degrees of freedom were studied in a number of publications (e.g., see [1–5]).

Considerable attention was paid to the analysis of the passive motion of a rigid body in a resistive
medium [2, 4, 6]. The problem of controlling the rotation of quasi-rigid bodies using concentrated
moments of forces, which is important for applications, has been studied less [3, 4, 7].

In this paper, we consider the quasi-optimal (close to time optimal) control of the deceleration of rota-
tions of a dynamically symmetric rigid body with a moving mass attached by a viscoelastic damper to a
point on the symmetry axis. The rigid body is acted on by a small moment of forces of the medium’s resis-
tance. The components of the control torques are represented by the products  ( ), where 
characterizes the efficiency of the control system with respect to the th axis,  are constants that are close
to each other (optimality is achieved when they are identical), and  are dimensionless control functions
in the form of feedbacks. The magnitudes of the control and dissipative torques  are small compared
to the initial kinetic energy of the body (the dimensionalities of these quantities are the same).

1. STATEMENT OF THE PROBLEM
We consider the controlled rotation of a dynamically symmetric rigid body with a moving point mass

attached by a strong viscoelastic damper to a point on the symmetry axis (in the undeformed state) [1, 2]
in a resistant medium. Under the approach described in [3], the asymptotically approximate equations of
the controlled rotation in the reference frame fixed to the body (Euler’s equations) have the form

. (1.1)

ε i ib u = 1, 2, 3i ε ib
i ib
iu

ε( )O

+ × = + +�

vu rG G M M Mω

CONTROL
IN DETERMINISTIC SYSTEMS
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Here,  is the vector of the control external (reactive) moment of forces,  is the vector of the internal
disturbing moment of forces caused by the presence of the viscoelastic element, and  is the moment of
the medium’s resistance forces [4]. The vector  is the angular momentum of the body, where

 is the tensor of inertia of the undisturbed body reduced to the principal axes, and
 is the vector of the angular velocity represented by its projections on the axes coinciding with

the principal central axes of inertia. The magnitude of the body’s angular momentum is

, .
Let us describe the control structure. The magnitude of the control torque is assumed to be of order ,

where  is a small parameter. Its components are represented in the form (see [3, 5])

, (1.2)

.
To simplify the solution of the optimal control problem, we impose a structural constraint on sys-

tem (1.1)—we assume that the moment of the resistance forces is small and proportional to the angular
momentum (see [6]):

; (1.3)
here  is a constant proportionality factor, which is mainly determined by the properties of the medium
and the shape of the body; this factor has the dimensionality of the angular velocity.

Taking into account Eqs. (1.2) and (1.3), the approximate system of equations (1.1) of the controlled
motion in the projections on the principal central axes of inertia has the form (see [1–6])

,

, (1.4)

,

, .

Note that if the coefficients  are all equal, control (1.2) is optimal for all values of ; this
property explains the simplifying assumption about the closeness of  and the introduction of the term
quasi-optimal control. The quantities  introduced in (1.4) are expressed in terms of the system
parameters as follows (see [1, 2]):

, . (1.5)

The coefficients  in (1.5) characterize the disturbing moments of forces due to the presence
of the viscoelastic element,  is the mass of the moving point, and  is the distance from the center of mass
of the undeformed system to the attachment point, which is on the dynamic symmetry axis of the body.
The constants  and  determine the frequency of the oscillations and the rate of their
damping, respectively;  is the rigidity (the coefficient of elasticity); and  is the viscosity coefficient of
the damper. We consider the case of a strong damper when the inequalities (see [1, 2])

, (1.6)

where  is the magnitude of the initial value of the angular velocity vector, are satisfied.
Inequalities (1.6) allow us to introduce a small parameter into (1.5) and assume that the disturbing

torques are small so that the averaging procedure can be applied after a certain initial transient process.
We state the problem of time quasi-optimal deceleration of the rotations

, , , (1.7)

which assumes that the parameters  are close to each other.

uM vM
rM

=G Jω
( )= 1 1 3diag , ,A A AJ

= ( , , )p q rω

= = + +2 2 2 2 2 1/2
1 3[ ( ) ]G A p q A rG ≠1 3A A

ε
ε 1!

= εu
i i iM b u

−= − = =1, 1, 2, 3, 1i iu G G i u

= −ελrM Jω
λ

( )+ − = −ε + + − ελ�

2 41
1 3 1 1 1

A pA p A A qr b FG qr Dr p A p
G

( )+ − = −ε − + − ελ�

2 41
1 1 3 2 1

A qA q A A pr b FG pr Dr q A q
G

−= −ε − + − ελ�

1 3 2 23
3 3 1 3 3( )A rA r b A A Dr p q A r
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< ≤3 10 2A A ≠3 1A A
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ib
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2. SOLUTION OF THE QUASI-OPTIMAL DECELERATION PROBLEM
To solve the quasi-optimal deceleration problem, it is convenient to reduce it to a dimensionless form.

As the characteristic parameters of the problem, we use, for definiteness, the moment of inertia of the rigid
body about the axis  – , and the order of the initial velocity (see Section 3) . Define the
dimensionless coefficients of inertia  and the dimensionless time . Then, system (1.4)
takes the form

,

, (2.1)

Here, based on the assumptions made above, we introduced the notation

, ,

, , , .

Let us use the general generating solution to system (2.1) for :

, , , . (2.2)

Here,  is the phase of the oscillation of the equatorial component of the angular velocity
vector.

Substitute (2.2) into the third equation in (2.1) and average the resulting system of equations for , .
Introducing the slow argument , we obtain 

, (2.3)

.

The mean value of the expressions containing the factor  is zero.

Note that, in the case , the equations for  and  are completely integrable, and this prob-
lem was solved analytically in [4, 7].

Consider the particular case

. (2.4)

Multiply the first equation in (2.1) by , the second one by , the third equation by , and add them.
Upon averaging, we obtain the equation

.

This equation should be integrated. Taking into account the initial condition  and the ter-

minal condition , , we obtain

, . (2.5)

1x =1 2A A ω0

=�

1/i iA A A τ = ω0t

( )= − − − ε + ε + ε − ελ
τ
�
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2 4
3 11 /dp A qr b p G FG qr Dr p p

d
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τ
�

�� � � �� �
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2 4
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d
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Note that  as  for all ; conversely,  as  (  is arbitrary) or as
.

For system (2.3) under condition (2.4), we can make the change of variables , . Then,
Eqs. (2.3) take the form

, . (2.6)

Divide the first equation by the second one to obtain

.

We have the first integral :

, . (2.7)

Substitute  from (2.7) into the first equation in (2.6) to obtain

, . (2.8)

Upon the substitution of expression (2.5) for  into Eq. (2.8) for , this equation can be integrated,
and its solution is (see [8])

(2.9)

The second constant of integration  is

The quantities  and  are related by Eq. (2.7). Thus, we have obtained expressions for the parameters
of the optimal motion  (2.5) and  (2.6)–(2.9). Their qualitative properties are simple
and easy to obtain.

3. NUMERICAL CALCULATIONS

System (2.3) was solved numerically for the renormalized initial conditions , ,
, and ; the values of the resistance coefficient ; the coefficients of

the control torque  with ; and the coefficient . In the first
calculation (curve 1), . In the second calculation (curve 2), . The parameters were chosen

Θ → ∞ → ∞� �
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such that they satisfy the conditions  and . To construct the plot of the magnitude of the
angular momentum, the expression

was used. Figures 1–3 show the plots of the functions , , and , which are similar in shape.
It is seen from these plots (Fig. 3, curves 1, 2) that the deceleration rate of the body is naturally higher

when the resistance coefficient increases (curve 2). The deceleration time is  in the first case and
 in the second case (Figs. 1–3). Note that the evolution of the magnitude of the angular momen-

tum does not change when the coefficients  are close to each other (the quadratic effect). The influence
of the internal forces due to the displacement of the moving mass is small; for this reason, the variation of
the coefficient  is not shown.

≤�

3 2A <� �0 0a r

⎡ ⎤= = +⎣ ⎦
� � �

� �

1/22 2 2
3G a A rG

�a �r �G
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CONCLUSIONS

The time quasi-optimal deceleration of the rotation of a dynamically symmetric rigid body with a vis-
coelastic element in a resistant medium is investigated. Within the asymptotic approach, an averaged sys-
tem of equations is derived; for the chosen numerical values of the dimensionless parameters, the decel-
eration time  and  is found; and the plots of the changing angular momentum and the
magnitudes  and  of the equatorial and axial components of the angular velocity vector of the quasi-rigid
body are constructed; these plots are similar in shape.
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