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Steady problems for a periodic system of punches acting on the plane wen
formulated in [1] and [2]. In [3] the stationary vibrations of an elastic half-pl
subjected to a periodical system of punches were considered. It should be note
that all there problems are limited to the theory of elasticity: the effect of
temperature field raised as a consequence of the contact was simply neglected.

In this paper the basic dynamical problem of the theory of thermoelastici
for a periodic system of punches is considered.

In view of the statement of the problem the boundary conditions considered
here are

v(x,0)=v,e" > I xel, (0
o,(x,0)=0 it xel, ®)
7,(x,0)=0 it xel|-n,x] (3)

where T° =[-g,q] 24 T, =[-7,7]\[-a,a]
As a requirement of the solution of this problem, the normal contact stréss

O'y' as well as the amplitude v, of the vibrations are to be found. The substitutio

for the component of the displacement by the expressions

I e 4 ks, (4

ox Oy oy Ox

where 7 and W are the longitudinal and transversal respectively, into the familias®
equations, [4],
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where ,), — l+v O Oy is the coefficient of thermal expansion, (; the modulus
l-v

-—2-(—;-—— * C§ = —(—;— and p isthe density.

p-v) P

We further assume that the solutions of (6) satisfy the conditions of absorption at

infinity [5]. These solutions can be thought of in the form

Bfelasticity, v “Poisson’s ratio, ¢, =

o(x,y,)=e""¢ (x,y) w(x,y,t)=e "y (x,y) (7)
where
Ve +a’p’ =mT V' + v’ =0 (8)
o = = and B = @ (9)
C‘l 02
and consequently
ooy Op .
R ook ARRTRL o ) PP
o 6x(6y+5x)pm¢
T:T :20...6_ _aﬁ___?_'{/_ _pw‘?‘w‘ (10)
ox\ dy  Ox
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here o - 7 andinwhat follows v arerelatedto o, > 7, and v byrelations

that are similar to (7). The boundary conditions (1) and (2) can be completed as
follows
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v x0)=v (x)+ . o 0=y () (11}
0)=v_ v, () yf» V/_

where
(x) = 0, xel
Vs ~ |undetermined, xeT,
undetermined, xel, (12Y
AR) =
W ( ) { O, X e Fz
sEspWe e X E L
V.\E) = {O, xel,

According to the principle of limiting absorption, (8) are considered
as limiting cases of the perturbed equations

Vi, +(a* +iwe)p, =mT"> Vi, +(B +iwe)y. =0 (13)

where . is an arbitrary small positive number.

In the same way as in [3], the corresponding hyperbolic typé
mixed problem is converted to a discrete Riemann problem which
in turns 1s reduced to the singular integral equation with Hilbert kernel

Aaﬁ
W

Tcot x ; ) w_(&)dE = Zi 'Y sinnx - f(x) (14)
where

f(x)=—if 5 (x) - v (x) (15)

The Hilbert-type integral equation (14) can be inverted in the
class of integrable functions with the result -

e

1 = X
v_(x)= A;ﬂX(x) [m(x) — 2; I“nﬂ V (x)¥,_ +a,cos S (16)
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Where X (x) = 4/2(cosx —cosa)

E(x)z_l_aX(é)sinnﬁdé,, - 1 ‘]X(g)f(é)df (17)

. (¥) = -
& rgee ¥ 27 4 sin 62"‘

e explicit values of the integrals }_(x) are

V,(x) = i u . (cos a)(cos(m + -%-) ) : (18)

nm=(

Uy,(cosa)=1- u,(cosa)=-cosa:

P, ,{cosa)—r, (cgs a)
2k -1

H,(cosa) =

BE-23..)

functions P, (cosa) are the Legendre polynomials which can be defined by
formula

| @ cos(n + -;—)xds
P (cosa) = — '[

72. a

(19)

X (x)

application of the Fourier transform to (16) leads to the following
stem of linear algebraic equations

Y, +2>T17*N,¥Y, =M,+a,R,> (neN*), (20
k=l
N, I (Vi(x)cosnx , M. = 21 J-m(x)cosnxdx, 2
T

"2 X(x) X(x)
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1 ¢ COS X COS —

s 2
! 272“[ X (x) -

-a

In view of (18) and (19) these coefficients can simply be found
1 k
Nnk - Z Z Juk—-m (COS a)[Pm,_" (COS a) & Pm+n (COS a)] (22)
: m=0

1
R, = 3 [P, (cosa) + P, (cosa)l

Since system (20) can in general be solved only approximately, namely using
the method of truncation, we set up function spaces and sequence spaces. If

f(x)e L [-a,a]- T >-—;1, then y_(x) € L [—-a,a], where 1< p <-§—.

Consequently the Fourier coefficients Y (x) will belong to / ,» Where

P
0 -1

. Thus we will work in the space £ (p > 4) with the norm

p=

2

- I/ p
,, -—-(Zl%_ I”] -
’ n=0

where V¥ = { n__} — . The justification of truncation system (20) is a simple

n={0 o

consequence of the following theorem whose proof of similar to that given in [6]

for the caée p= ¢
Theorem.
Suppose that

1) The homogeneous system corresponding to system (20) has only

trivial solution in ¢ g
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n=0 \_k=l

i) iRnp@O and ianf’@o,

n=0 n=0

the infinite system (20) has a unique solution in £ . The truncated system
i also have a unique solution and the following estimate holds

I‘P—-‘I’N

g, {8 . pAp-1) i3
. Ql[ 2 '\Zlﬂ" N o )p-—l} + (24)
‘ n=N+1\ k=l

P

" e p']lfp
R
r:-;ﬂ "
FO.| =

| 2,

where Ql and Q;1 are constants.

We shall assume that the frequency @ differs from those values for which the
Enogeneous system corresponding to (20) has nontrivial solutions. The fulfilment
the second and the first part of the third conditions follow from the formula

] n+1 |
Wi |2, (cosa)P,,,(cosa) - P,,,(cosa)P,(cosa)], (25

E Bl n+k:
pgether with the estimate

: 2 1/2 1
picosa)| < |\ — : (O<a<;z';n=],2,“_) (26)
I (cosa) (ﬂ] Jn

sina

Relations (25) can be completed according to (22) to include

the case 7=k . However we just aim here to estimate the summations
- Bl



in the right-hand side of (24). The consideration of the infinite parts » > & on
n < k s sufficient for that purpose. We have

C
c c PR _
|Nﬂk|~7_n_, N, |~ - and E3 - @n

Therefore, conditions (ii) and the first condition of (iii) are satisfied as p> 43

Recall the l"fﬂ == o(k"z) . The satisfaction of the second part of (iii) follows

because the coefficients A/ ~ from its very definition depend only on thel
temperature since }'(x) = (. The temperature function is the solutions of thél

heat equation subjected to a homogeneous Neumann condition in ', while il

restriction on I, is of the form 7'(x,0,7) = e f(x). Thus it has the form

T(x,p.0)=e"" (T, (0)Age ™ +2) A,T, (0)e"™ ™
n=|

10

»iJ3
where /1”- = (nz ) — 0(n_] ), @, is the thermal diffusibility and the'

ay

Fourier coefficients Tyn (0) of the Neumann data are to be determine so that th

above mentioned Dirichlet condition is satisfied. This determination can be achieves
using the same procedures followed in this paper. The left hand side of the resulting
algebraic system is similar to system (20). The distinction being only in the definitios

of the coefficients I"fﬁ . However the corresponding coefficients are still of ordeg

k™. Thus T wm(0) € £, p>4. With the aid of this result together with the
expressions

T,(0)~A4T,, ad T (0)~ni,T.,(0)

we come to the conclusion that A, is subjected to condition (iii). Finally, we
have
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< d . (28)

iy = (N +1)(P-2)f(2p)

-y

Whus the approximate solution of the singular integral equation (14) is given by

—

-

) |
m(x)-2Y T#V, (x)¥, +a, cos -;i = -0 (x,0)(29)
n=1

|
__ e

b

where ‘Pn_ are the solution of system (20) truncated at the N order. The

E:tity a, included in (29) is still to be defined. In fact the equation of motion
the punch is

d’v
dt’

B =" (B, - P,): (30)

‘re M is the mass of the punch and PR is the reaction of the elastic half-

=~ [0} (x0)dx = [y (x)dx=-—q, Gh
-~ -a aff

Substituting this expression together with v = v, e " into (30) we get

2
sz__Ma) Vo + By (32)

o

Substituting (32) into (1), when x = (), we obtain the value
of the amplitude v,

The real values 4, for which ,,* (x,0) > o the resonance frequencies, are
brly the real roots of the resonance equations [3]

D% =0 max(a, B)<n<N- (33)
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If max(a, f) <1, then m =1,2,...,N . For n=1, the resonance equation§
assume the form

(2G - pw?)? —4G*\1-a? J1- f* =0 (34)

or in the dimensionless form

2-w?)! -4 f1-0? 1-olc’ =0 (35)
where
ik 0l .. ¥ (36)
C, C,

Equation (35), coincides with Rayleigh equation for the half-space [5]. ThusII
the real roots of (34) are connected with the velocity of propagation of surface

Rayleigh waves.
Finally, some results of a numerical experiment are given to reveal some idea

about the usefulness of the method. Let the force acting on the punch be P cos @}
then

p(x,f) =—Re(e ™y _(x))- G37)

where % is given by (29). In the case

@ =0.1> N=25 and -3 (38)
- 3
the values of the contact stress 2 (x ’ T) , Where - _ _!_C_z_ is the dimensionless
PO a?‘
') N 2 . - ol .
time, @ = is the dimensionless frequency and x = — , corresponding to
s a

different values of the dimensionless mass

7= M (39)




"_'given in table 1 at 7 = 2. In table 2 the values of the contact stress

sponding to different values of 7 are exhibited when jps —1.1If p=5
the estimation of the error is subjected to the inequality

i i (40)
¢~ 2.6576

ough the upper bound of the error still seems so far from its value that insures
ision of the contact stress, the values shown in tables 1 and remain stable to

“w-w”

e first three decimals when p7 increases beyond the 25th order.

\ M 0.5 1 2 S
. - 0.3329 0.3332 0.3337 0.3357
0.3384 0.3388 0.3393 0.3413
0.4034 0.4039 0.4045 0.4069
0.7107 0.7114 0.7125 0.7168
0.9838 0.9847 0.9863 0.9921
2.1600 2.1623 2.1657 2.1786
Table 1: The instantaneous contact stress at different values of the mass of
the punch.
] 5 10 29
0.3315 0.2927 0.1800 -0.2669
0.3771 0.2976 0.1831 -0.2714
0.4019 0.3548 0.2182 -0.3235
0.7078 0.6250 0.3844 -0.5698
0.9798 0.8651 0.5320 -0.7887
2.1515 1.8996 1.1683 -1.7320

Table 2: The time evolution of the contact stress.

In view of table 1 and 2, the values of contact stresses increase unboundedly
at the vicinities of the end points while table 2 exhibiting the time evolution of the
contact stress reveals that compressive stresses become tinsel stresses in the course

of time. This manifests the reflection of compression waves from the corner points
as tension waves.
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