НЕСУЩАЯ СПОСОБНОСТЬ, ТРЕЩИНОСТОЙКОСТЬ И ДЕФОРМАТИВНОСТЬ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ ИЗ КЕРАЛИТОБЕТОНА

Костюк А.И., к.т.н., доцент

Одесская государственная академия строительства и архитектуры

Опытные элементы балки были изготовлены из кералитобетона на карбонатном песке класса по прочности на сжатие B12,5.

Расход материалов на 1м³ приведен в табл.1.

Таблина 1

Расход компонентов кералитобетона оптимального состава на 1м³ смеси

Пемент Кералитовый гравий кг Карбонатный Вола

Цемент	Кералитовы	й гравий, кг	Карбонатный	Вода,
КΓ	фр.5-10 мм	фр.10-20 мм	песок, кг	Л
360	169	198	727	292

Расход воды назначили таким образом, чтобы обеспечить подвижность смеси OK = 6 см.

Нагрузку в виде двух сосредоточенных сил в третях пролета передавали с помощью траверсы. До образования трещин ступень нагрузки составляла $15\pm5\%$ от расчетного значения $M_{\rm crc}$, затем ее увеличивали до $0.1M_{\rm u}$, а непосредственно перед разрушением снова уменьшали для точности фиксации момента разрушения. На каждой ступени после образования трещин принимали выдержку в течении 15 мин. При этом отсчеты по приборам снимали в начале и в конце выдержки. При испытании балок производили измерения прогибов, деформации арматуры и сжатой грани бетона в зоне изгиба, а также деформации бетона по высоте сечения в четырех уровнях. Прогибы фиксировались в средине пролета и под грузами. Помимо этого фиксировали появление трещин и их развитие по высоте сечения.

Опытные значения моментов вызывающих появление первых трещин, определялись по усилиям, при которых наблюдался скачок в показаниях тензорезисторов, наклеенных на уровне растянутой арматуры, а также уточнялись путем анализа прогибов, деформации растянутой арматуры, растянутой и сжатой зоны бетона. Испытания балок

проводили в возрасте кералитобетона $t = 115 \pm 6$ суток.

Физико-механические характеристики кералитобетона опытных балок приведены в табл. 2.

Таблица 2

Физико-механические характеристики кералитобетона опытных балок

- 1								
	R(28)	$R_{\rm B}(28)$	R(115)	$R_{\rm B}(115)$	$E_{B}(28)$	$E_{B}(115)$	$R_{\rm Bt}(115)$	ρ
	МΠа	МПа	МПа	МПа	МПа	МПа	МПа	$\kappa\Gamma/M^3$
	16,1	14,1	17,0	15,2	11600	11760	1,94	1510

Испытания балок проводили с целью выявления их фактической несущей способности, трещиностойкости и деформативности. Основные результаты исследований приведены в таблице 3.

Все испытанные балки разрушились по нормальному сечению в зоне чистого изгиба. Разрушение происходило от достижения, в растянутой арматуре напряжений равных пределу текучести с последующим раздроблением бетона сжатой зоны. Опытные прогибы всех балок перед разрушением не превышали величину предельно допустимых: f=1/50L. В балках наблюдались характерные явления предшествующие моменту разрушения в сжатой зоне происходило шелушение поверхности, вертикальные трещины в верхней части разветвлялись, переходя в горизонтальные трещины в сжатой зоне, наблюдалась тенденция к непрерывному росту деформаций.

Теоретические значения разрушающих моментов M_u^T определялись по СНиП 2.03.01-84* введением в расчет фактической прочности бетона и предела текучести арматуры.

За опытный разрушающий момент $M_u^{\ 0}$ принимали изгибающий момент от внешней нагрузки, при котором напряжения в растянутой арматуре достигали предела текучести. При этом начиналось разрушение бетона сжатой зоны. При уточнении опытного значения разрушающего момента использовали результаты измерений деформации растянутой арматуры и бетона сжатой зоны, а также прогибы балок. Опыты показали, что при достижении момента разрушения во всех образцах проявлялись большие пластические деформации.

Сопоставление опытных разрушающих моментов Mu^0 с теоретическими Mu^T приведено в таблице 3. Как видно из этой таблицы, наблюдается хорошая сходимость опытных и теоретических разрушающих моментов. Опытные разрушающие моменты в балках серии I ниже теоретических в среднем на 3,1%, а в балках серии II выше теоретических в среднем на 0,7%. Максимальное отклонение Mu^0 от Mu^T в балках I серии наблюдалось в балках БК-I-2 и составило (8,4)%. В балках

II серии максимальное отклонение наблюдалось в балке БК-II-1 и составило (6,3) %.

Таблица 3 Результаты испытания балок

Марка балки	М _и , Н.м	$M_u^{\scriptscriptstyle \mathrm{T}},$ H.M	$\frac{M_{\rm u}^{\rm 0}-M_{\rm u}^{\rm T}}{M_{\rm u}^{\rm T}}$ 100%	М ⁰ сгс Нм	М _{сте} Нм	$\frac{M_{\text{erc}}^0 - M_{\text{erc}}^{\text{T}}}{M_{\text{erc}}^{\text{T}}} 100 \%$
БК-І-1	5790		1,0	746		4,6
БК-І-2	5250	5732	8,4	698	782	10,7
БК-І-3	5626		1,9	806		3,1
БК-ІІ-1	10780		6,3	1502		2,9
БК-ІІ-2	9560	10140	5,7	1694	1546	9,6
БК-ІІ-3	10290		1,5	1672		8,2

При испытании опытных балок были получены опытные данные, позволяющие оценить параметры ν , $\psi_{\text{в}}$, ξ , $\epsilon_{\text{вm}}$, принятые в СНиП $2.03.01\text{-}84^*$ для расчета изгибаемых элементов.

Анализ деформации бетона сжатой зоны показывает, что на первых ступенях нагружения они примерно одинаковы (с учетом неоднородности бетона) по длине зоны чистого изгиба. С образованием трещин проявляется неравномерное развитие деформации сжатого бетона, увеличивающаяся с ростом нагрузки.

Неравномерность распределения деформации крайних сжатых волокон бетона характеризуется, как известно, коэффициентом $\psi_{\text{в}}$, определяемым как отношение средних деформаций к деформациям в сечениях с трещинами: $\psi_{\text{в}} = \epsilon_{\text{вm}} / \epsilon_{\text{всгс}}$. Опытные значения коэффициента $\psi_{\text{в}}$ колеблются в пределах от 0,87 до 0,96. Наблюдается некоторое влияние на величину $\psi_{\text{в}}$ процента армирования. Так в балках с (μ = 0,77 %) значение $\psi_{\text{в}}$ несколько меньше, чем в балках с (μ = 1,75 %). Однако это различие с практической точки представляет собой не настолько существенным, чтобы дифференцировать значение $\psi_{\text{в}}$ в зависимости от процента армирования.

Корреляционный анализ показывает, что между $\psi_{\scriptscriptstyle B}$ и M/Mu существует достаточно тесная линейная связь выражения уравнения регрессии:

$$\psi_{\rm B} = 0.90 + 0.02 \,\text{M/Mu}^{0}. \tag{1}$$

Коэффициент корреляции между величинами $\psi_{\text{в}}$ и M/Mu 0 равен 0,84.

Таким образом с повышением уровня загружения величина коэф-

фициента $\psi_{\text{в}}$ несколько увеличивается. Однако его влияние весьма малозначительно. Так при M/Mu^0 =0,625 (уровень эксплуатационных нагрузок) $\psi_{\text{в}} \approx 0,91$, а при M/Mu^0 =1 коэффициент $\psi_{\text{в}} = 0,92$. В практических целях безусловно оправдано пренебречь столь незначительным влиянием уровня загружения, приняв $\psi_{\text{в}} = 0,9$, что согласуется с существующими нормами.

Одной из важных характеристик упруго-пластичного состояния бетона сжатой зоны является коэффициент ν который определяли из соотношения

$$v = \omega \overline{V} = \omega E_B'/E_B = \omega \varepsilon_{Bef}/\varepsilon_{Bm}$$

где ω - коэффициент полноты эпюры напряжений сжатой зоны бетона; ϵ_{Ref} - упругие деформации краевого сжатого волокна сечения;

 $\epsilon_{\mbox{\scriptsize Bm}}$ - полные средние деформации краевого сжатого волокна сечения.

Полученные таким образом опытные значения коэффициента ν аппроксимированы зависимостью вида

$$v = 0.481 - 0.027 \text{ M/Mu}^{0}.$$
 (2)

Ее выборочный коэффициент корреляции r =0,82.

Анализ зависимости (2) показывает, что рост нагрузки вызывает уменьшение значений v. Связано это c тем, что вначале загружения бетон работает почти как упругий материал; при этом ω =0,5, а \overline{v} =1. С ростом нагрузки все заметнее проявляются неупругие деформации бетона, вызывающие увеличение ω и уменьшение \overline{v} . Но, как было установлено многими исследователями при эксплуатационных нагрузках произведение v= ω \overline{v} меняется мало, что делает его удобной величиной для использования в расчетах.

При нагрузках, близких к эксплуатационным, опытное значение коэффициента ν , вычисленное по зависимости (2) равно 0,463, что несколько выше значения ν =0,45, рекомендуемого СНиП 2.03.01 - 84* для элементов из легкого бетона. Однако в расчетах изгибаемых элементов из кералитобетона на карбонатном песке, учитывая принятые выше допущения при определении коэффициента ν , его значение рекомендуется принимать таким же, как и для других видов легких бетонов, т.е. ν =0,45.

Опытные значения ξ в сечении над трещиной определяли двумя способами:

- по экспериментально построенным эпюрам напряжений бетона в сжатой зоне;
 - по методике, предложенной А.А.Гвоздевым, с помощью которой

по опытным значениям M, $E_{\text{в}}$, и $\epsilon_{\text{вm}}$, ν определяли соответствующие значения ξ :

$$\xi (1 - 0.5 \xi) = M / Bh_0 \varepsilon_{BM} \nu E_B$$
 (3)

Проведенными опытами установлено, что значение ξ в сечениях над трещинами сразу же после их появления становятся почти постоянными на всем диапазоне нагружения балок. Увеличение процента армирования от $\mu=0,77\%$ до $\mu=1,75\%$ вызывает рост высоты сжатой зоны в среднем на 13,2%.

Вычисленные по формулам СНиП 2.03.01-84* значения относительной высоты сжатой зоны ξ^T меньше опытных ξ^{on} . Их отношение в среднем составляет 0,82 при коэффициенте вариации $C_{v\xi}$ = 9,3%. Такое отношение вполне естественно, поскольку формула СНиП отражает не действительную, а условную высоту сжатой зоны, соответствующую принятым предпосылкам (в частности прямоугольной эпюре напряжений).

Во всех испытаниях балки до нагрузок, равных (0,7-0,8) Mu^0 наблюдалась почти линейная зависимость между нагрузками и деформациями. При дальнейшем увеличении нагрузок деформации бетона резко возрастали.

Теоретические величины средних относительных деформаций краевого сжатого волокна бетона определяли по формуле:

$$\varepsilon_{\rm Bm} = \psi_{\rm B} M / \, {\rm Bh_0} \, \xi \, \nu \, E_{\rm B} \, z \tag{4}$$

Опытные значения деформаций бетона сжатой зоны $\varepsilon_{\text{вm}}^{0}$ хорошо согласуются с теоретическим $\varepsilon_{\text{вm}}^{T}$, вычесленным по фрмуле (4).

Проведенными опытами установлено увеличение значений ϵ_{sm}^{0} с ростом количества рабочей арматуры. Так при увеличении процента армирования от $\mu=0,77\%$ до $\mu=1,75\%$ деформации бетона сжатой зоны возрастает в среднем в 1,72 раза.

Предельные деформации бетона сжатой зоны составили в среднем от $\varepsilon_{\text{ви}}^{0} = 295 \cdot 10^{-5}$ до $\varepsilon_{\text{ви}}^{0} = 500 \cdot 10^{-5}$.

При нагрузке, близкой к моменту образования трещин в растянутой зоне, бетона, происходило заметное развитие деформаций. Первые трещины появились при нагрузках, составляющих от (0,13 - 0,148) Mu^0 до (0,141 - 0,186) Mu^0 .

Предельные деформации бетона растянутой грани составили в среднем $28\cdot10^{-5}$, что в 1,51 раза превышает максимальное относительное удлинение, принятое в СНиП 2.03.01-84* и равное $2R_{\rm nt}$ ser/ $E_{\rm n}$.

Теоретический момент трещинообразования определяли по СНиП 2.03.01-84*. Соотношение опытных теоретических моментов трещинообразования $M_{\rm crc}^{/}/M_{\rm crc}^{T}$ в среднем составляет 1,019.

Ширина раскрытия трещин замерялась на боковых гранях балок на

уровне центра тяжести растянутой арматуры. Измерения проводились, начиная с загрузки, при которой трещина появлялась, и примерно до 0,8 от разрушающей. Средняя ширина раскрытия трещин вычислялась по данным шести - восьми замеров.

Средняя ширина раскрытия трещин в зоне чистого изгиба балок при эксплуатационной нагрузке находилась в пределах 0,09-0,17мм, увеличиваясь с уменьшением процента армирования. Наибольшее значение а_{стс} при этой нагрузке достигло 0,21 мм.

При анализе опытных значений ширины раскрытия трещин выявлена достаточно высокая изменчивость $a_{\rm crc}$. Коэффициент вариации этой величины составил $C_{\rm vacr}=0,37,$ что находится в соответствии с обобщенными данными экспериментов с из тяжелого [2] и легкого [1] бетонов

Сравнение опытных значений $a_{\rm crc}$ с нормативными, вычесленными по СНиП 2.03.01-84* показало, что последние превышают их в 1,43-1,86 раза. Это вполне закономерно, так как определяемое нормами значение $a_{\rm crc}$ представляет собой ширину раскрытия трещин с 95% обеспеченностью.

Анализ опытных данных расстояния между трещинами ℓ_{crc} в зоне чистого изгиба балок показал, что эта величина не постоянна и изменяется в пределах $\pm 50\%$ при среднем значении ℓ_{crc} около 8 см.

Экспериментальные значения прогибов балок сравнивали с расчетными, определяемыми по формуле $f = S(1/\rho) \, \ell_0^{\ 2}$.

Расчетные значения кривизны балок $1/\rho$ после появления трещин определяли по СНиП 2.03.01-84* при фактических значениях параметров ν , $\psi_{\text{в}}$, ξ , $E_{\text{в}}$. Параметр ψ_{s} определяли по СНиП 2.03.01-84* при уточненном значении $R_{\text{вt,ser}}$. Соотношение опытных и расчетных прогибов составляет в среднем от $f^0/f^{\text{r}}=1,01$ и до $f^0/f^{\text{r}}=1,03$. Следовательно прогибы балок с достаточной точностью могут рассчитывается по СНиП 2.03.01-84* с учетом действительных характеристик материалов и параметров жесткости.

Выводы

1. Изгибаемые элементы изготовленные из кералитобетона на карбонатном песке трещиноустойчивы. Средняя величина отклонения опытных моментов трещинообразования от расчетных составила 6,3-8,4%. Установлено, что в изгибаемых железобетонных балках исследуемого бетона максимальная ширина раскрытия трещин составила $a_{crc}=0,21$ мм, не превышает предельно допустимое значение acrc = 0,3мм. Балки из кералитобетона на карбонатном песке обладают достаточной

прочностью и трещиностойкостью.

2. Получены экспериментальные данные по деформации бетона, арматуры, прогибов изгибаемых железобетонных элементов. Отношение полного прогиба к длине пролета при эксплуатационной нагрузке находился в пределах $(1/152...1/165)\ell$, ширина раскрытия трещин не превышала 0.21мм. Соотношение опытных и расчетных прогибов составляет в среднем 1.01 и до 1.03.

Summary

Experimental information and analysis of bearing strength is resulted, crack resistance and deformability beams from keralitoconcrete on carbonate sand.

Литература

- 1. Вилков К.И. Конструкционный керамзитобетон при обычных и сложных деформациях. М.: Стройиздат, 1984. 240 с.
- 2. Гвоздев А.А. и др. Прочность, структурные изменения и деформации бетона. М.: Стройиздат, 1978. 297 с.
- 3. Гвоздев А.А., Берг О.Я. Основные итоги и дальнейшие задачи научно- исследовательских работ в области бетона и железобетона /УІ Всесоюз. конф. по бетону и железобетону: Докл. М.: Стройиздат , 1966. С. 3-7.
- 4. ГОСТ 8829-77. Конструкции и изделия железобетонные сборные. Методы испытаний и оценка прочности, жесткости и трещиностойкости.- М.: Изд-во стандартов, 1977
- 5. Инструкция по изготовлению конструкций и изделий из бетонов, приготавливаемых на пористых заполнителях: СН 483-76. М., 1977. 24 с.
- 6. Косолапов А.В., Самарин Ю.А. Влияние зернового состава крупного заполнителя бетона на особенности развития процесса микроразрушений // Строительство и архитектура. Известия ВУЗов. 1979. N04. C.23-28.