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Two elastic rough layers (coverings) having distinct thicknesses
( )2,1=ihi , mechanical and thermophysical characteristics are applied to 

undeformable backings. These bodies have been drawn together by quantity 
k so that the thickness of the packet of layers is equal to khh −+ 21 . Then 
we assume, that <<k min ( )21, hh . At 0=t one of bodies starts to slide 
with respect to another in the direction of axisz - or axisx - with the 
velocity V. Dynamical effects are neglected. On the boundary between 
layers we have friction forces  

    ( ) ,qqk=τ                                      (1) 
where ( )tq  is the contact pressure changing with respect to time t slowly; 
( )qk is the coefficient of friction depending on pressure. Friction forces give 

rise to wear of layers. These forces do the work  
τVQ = ,                                                     (2) 

which practically all passes into heat [1]. Therefore the problem of heat 
conductivity for bodies with coverings in the case of heat sources 
distributed in the contact region ( )0=y  must be considered. 

As far as ( )tq  varies slowly then the process of heat conductivity in the 
layers may be assumed to be quasi-stationary. 

We suppose that the temperature of the backing of the second layer is 
equal to zero and denote the temperature of the backing of the first layer by 

).0( 00 ≥TT  

( )2,1* =iTi  are the temperatures of layer surfaces in the contact region.  
Solving the corresponding heat equations for layers we get 
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At 0=y we have the condition of the imperfect contact 
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where ( )qR  is the contact thermoresistance. On substituting (3) into (4) we 
obtain 
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We require that *
iT  at any time don’t reach the temperatures of melting 

of corresponding layer materials.  
Therefore we must impose some restrictions on values of V and 0T . 
The condition of mechanical contact between layers is 

( ) ( ) ( ) ( ) ,,, 121122 ktvtvthvthv =−+−−                    (6) 
where ( )thv ,11  and ( )thv ,22 −  are the displacements of rigid backing in the 
direction of axisy - caused by deformation of layers; ( )tv1  and ( )tv2  are the 
displacements of backings in the same direction arising from wear of layers 
and bearing of roughness. On the basis of equations of uncoupled 
thermoelasticity withe regard for expressions of temperatures in layers (3) 
and boundary conditions 

( ) ( ) ,0,0,0 21 == tvtv  
( ) ( ) ( )tqtt yy −== ,0,0

21
σσ  

we have 
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where iG  and iv  are elastic constants, of layer materials, 1α  are their 
coefficients of linear expansion. The difference ( ) ( )tvtv 12 −  can be 
represented in the form [2] 

   ( ) ( ) ( ) ( )∫ +=−
t

qqgdqfVtvtv
0

12 τ         (8) 

where ( )qf  and ( )qg  are some non-linear functions of pressure. 
On substituting (6) in (7), (8) and (5) we have the following integral 

equation for the contact pressure q  

    ( ) ( )[ ] ( ) ( )∫ =+−−
t

kdqfVqTqqVq
0

021 ,τηγγ                    (9) 

where    ( ) ( ) ( ) ( ),1
111

1
2221 qgGhGhq ++= −− δδγ   
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The functions ( ) ( ) ( )qfqRqk ,,  and ( )qg  are often taken in the form  

( ) ,,,,10
εδγβα EqgDqfCqRBqAqkk ===++= −−  

where all constants are defined by experiment and 
   .01,1,1,1,1 ≤<−≥=≤< εδγβα                 (11) 

The integral equation (9) is equivalent to the differential equation  
  ( ) ( ) ( ) ( ) ( )[ ] 0'

0
'
221 =+−−− qVfqqTqqVqVq ηγγγ          (12) 

and the initial condition  
     ( ) ( )[ ] ( ){ } kqTqqVq t =−− =0021 ηγγ         (13) 

The latter in general is a transcendental equation with respect to ( )0q . 
The existence of the solution of this equation when ( ) 00 >q  is the 

condition of thermal stability [4]. Therefore V and 0T  must be subjected to 
one more restriction.  

The fulfillment of the above mentioned condition ensures the damping 
of ( )tq  when .∞→t Having found ( )0q from the equation (13) we can 
obtain the solution of the equation (12) and the contact layer temperatures 
by formulas (5). 

We consider the special ease.  
Let .1,0 ======= γδεβαBA  
Then the equation (9) takes the form  
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where  
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We construct the asymptotic solution of the equation (14) for small 
values of time. To this end we seek the solution ( )tq  in the form of the 
expansion  
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Substituting (16) in the equation (14) and equating coefficients of like 
powers of t we obtain the following relations for the determination of the 
first three ia  
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Here the first relation is the non-liner algebraic equation with respect to 

0a . The unique solution of this equation such that 00 >a exists under the 
conditions  

., 011 kdnTVacVbd ++>> γγ     (18) 
These conditions are the conditions of thermal stability. 
The second and the third conditions (17) are used for successive 

determination of 1a  and .2a  The possibility of constructing of subsequent 
terms ( )4≥i  of the asymptotic solution (16) with simultaneous 
redetermination of previous terms is obvious. Now we construct the 
asymptotic solution of the equation (14) for large values of .t  To do this we 
reduce the equation (14) to the following equation 
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Note, that 0>F  by virtue of the second condition (18). The quantity G 
may be positive or negative depending on parameters of the problem. 

We solve the equation (19) by method of successive approximations 
with regard for the fact that 0→q  when ∞→t . Namely, the first 
approximations we hind from the equation (19) when the second term in the 
square bracket is discarded. 

It is easily verified that  

   
11,, −−− === VDFHFeq t µλλ µ     (20) 

The second approximation we find from the equation 

   ( ) ∫ =++
t

HdqVDqGqF
0

221 τ     (21) 

We reduce this equation to the equivalent differential equation with the 
corresponding initial condition. Next we have  

( ) ( ) .
212

2
tGtG eeGFGFEq µλµλ λλ −−−− ++=         (22) 

The possibility of constructing of subsequent approximations for the 
solution of this equation for values of t  is evident. 

Then the contact temperatures *
1T  and *

2T  for small and large values of 
time can be found by formulas (16), (22), and (5). 

Let us take note of the fact that the contact temperatures are maximal 
when .0=t  This is the defect of the qusi-stationary statement of the 
problem. However the contact temperatures reach maximal values for very 
small relative time. Then they begin to diminish to 0T  and zero slowly. This 
occurs due to the fact that ( )tq  tends to zero and the contact 
thermoresistance tends to infinity.  
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Сonclusion 
 

When one solid body is slid on another, the temperature in the vicinity 
of the interface will tend to rise smoothly with time. Wear of the surfaces 
has been associated with thermal stresses. The appearance of such a 
disturbance has been attributed to a kind of instability where the material in 
the vicinity of a heated asperity expands and relieves the surrounding region 
of load, thereby increasing the heating of the region. 

 
 
Summary 
The quasi-static plane problem of uncoupled theory of thermo 

elasticity for rough coverings of rigid bodies with regard for friction 
heating and wear are considered. Non linear Volterra’s equation for 
the pressure is obtained. In special case the asymptotic solutions of this 
equation for small and large relative time are found. The phenomenon 
of the thermal instability is described and examined.  
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