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Two elastic rough layers (coverings) having distinct thicknesses
h, (i=1,2), mechanical and thermophysical characteristics are applied to

undeformable backings. These bodies have been drawn together by quantity
k so that the thickness of the packet of layers is equal toh, +h, —k . Then
we assume, that k << min(hy, h,). At t=0one of bodies starts to slide

with respect to another in the direction of z-axisor x-axiswith the
velocity V. Dynamical effects are neglected. On the boundary between
layers we have friction forces

r=k(q)q, )

where q(t) is the contact pressure changing with respect to time t slowly;

k(q)is the coefficient of friction depending on pressure. Friction forces give
rise to wear of layers. These forces do the work
Q =Vr, (2)
which practically all passes into heat [1]. Therefore the problem of heat
conductivity for bodies with coverings in the case of heat sources
distributed in the contact region (y =0) must be considered.
As far as q(t) varies slowly then the process of heat conductivity in the

layers may be assumed to be quasi-stationary.
We suppose that the temperature of the backing of the second layer is
equal to zero and denote the temperature of the backing of the first layer by

To(To 20).
Ti*(i =1, 2) are the temperatures of layer surfaces in the contact region.
Solving the corresponding heat equations for layers we get
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T, :Tl*(l—%J+TO%,

©)
* y
T, =T,|1+—|
=t
At y = 0we have the condition of the imperfect contact
2T, =T, =Vr, @

2T, + 4T =2R(q ))_1(T1 ~T,),
where R(q) is the contact thermoresistance. On substituting (3) into (4) we
obtain

T, = [Vkahy (4R +2h; )+ 2h, 4To ]A™ ()
A=2(24 2R +hydy + Ay )
We require that T,” at any time don’t reach the temperatures of melting
of corresponding layer materials.
Therefore we must impose some restrictions on values of V and T .
The condition of mechanical contact between layers is
V(= hp, )= v (hy, )+ v, (t) - vi (t) = K, (6)
where v;(hy,t) and v,(~h,,t) are the displacements of rigid backing in the
direction of y - axis caused by deformation of layers; v;(t) and v,(t) are the

displacements of backings in the same direction arising from wear of layers
and bearing of roughness. On the basis of equations of uncoupled
thermoelasticity withe regard for expressions of temperatures in layers (3)
and boundary conditions

v;(0,t)=v,(0,t)=0,

o, (0.t)=0, (0.t)=—qt)
we have

vy (hy,t)=— quh511 +%ﬂlhl(T0 +T1*) (7)

h 1 *
Vo(=hy,t)= qu —Eﬂzhsz-
2Y2

5 =20-v 1-2v,) Y, B = a4V JL-v)
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where G; and v; are elastic constants, of layer materials, ¢, are their
coefficients of linear expansion. The difference v,(t)-v,(t) can be
represented in the form [2]

V) v0)=V] 1 ()e + agla) @

where f(q) and g(q) are some non-linear functions of pressure.

On substituting (6) in (7), (8) and (5) we have the following integral
equation for the contact pressure q

[(@)-Vr2(a)la—Ton (a)+V I f(a)z =k, )
where ( )=h,(G,8,) * + (G, ) +9(Q)
(@) =K[Bh2(4R + 20, )+ Ah2(1,R+ 20, )|2A) Y, (10)

)= (5024 A + 2 2RI
The functions k( JR(q), f(q) and g(q) are often taken in the form
k=ko(Aq” +1+Bq#|R=Cq 7, f =Dg’,g = Eq°,
where all constants are defined by experiment and
a<l f<ly=1621-1<&<0. (12)
The integral equation (9) is equivalent to the differential equation
(@)-Vr2(@)-Vrs(@a-Tor @a+Vi@|=0  (12)
and the initial condition
{n(@)-Vr.(a)l —Toﬂ(Q)}t=o =k (13)
The latter in general is a transcendental equation with respect to q(O).
The existence of the solution of this equation when q(0)>0 is the
condition of thermal stability [4]. Therefore V and T, must be subjected to

one more restriction.

The fulfillment of the above mentioned condition ensures the damping
of q(t) when t—oco.Having found q(0)from the equation (13) we can
obtain the solution of the equation (12) and the contact layer temperatures
by formulas (5).

We consider the special ease.

Let A=B=a=F=¢=0,6=y=1.

Then the equation (9) takes the form
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a+hq ¢ m+nq
-V VD =k+T, , 14
(71 C+dq]cw gq(r)dr o g (14)

where
a= 2_lkoC(ﬂ2h22 M+ /31*‘12/12) b=keh;h, (ﬂzhz _ﬁihl)v
c=244C, d =2(hyAy +hiy), m=28nA40C, (15)
n=Bo05 4 + 2oy + BiE .
We construct the asymptotic solution of the equation (14) for small
values of time. To this end we seek the solution g(t) in the form of the

expansion
qt)=> at'. (16)
i=0

Substituting (16) in the equation (14) and equating coefficients of like
powers of t we obtain the following relations for the determination of the
first three &

a, [yl—VCA*J—TOCM* =k, Pa, +VDa, =0,

2 2
Pay +%VDa1— aév [b—idj[l— da°j+—T°a1d (n— M*djzo,

*

a7

C. C.) c? C.
A. =a+bay, C. =c+day, M« =m+nay,
p 7&V_(A~_d]T_(M_dJ
C. C. C. C. C.
Here the first relation is the non-liner algebraic equation with respect to
a, . The unique solution of this equation such that a, > 0exists under the
conditions

*

7,d >Vb, 7€ >Va+Tyn+kd. (18)

These conditions are the conditions of thermal stability.

The second and the third conditions (17) are used for successive
determination of & and a,. The possibility of constructing of subsequent
terms (i>4) of the asymptotic solution (16) with simultaneous
redetermination of previous terms is obvious. Now we construct the
asymptotic solution of the equation (14) for large values of t. To do this we
reduce the equation (14) to the following equation
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[F +Gql(q)lg +VD_t[q(r)dr =H, (19)

where
F :yl_v_a+T_0(m_d_njl H :k_|.-|-0_rnl
c cl¢c c
-1
G:ltﬂ—b]—@(m—d—nj, I(q)=(1+gq] .
clc c c c

Note, that F >0 by virtue of the second condition (18). The quantity G
may be positive or negative depending on parameters of the problem.

We solve the equation (19) by method of successive approximations
with regard for the fact that q—0 when t—oo. Namely, the first

approximations we hind from the equation (19) when the second term in the
square bracket is discarded.
It is easily verified that

q=4e " A=HF? u=VDF™ (20)
The second approximation we find from the equation

t
(F+Gag; )i, +VD[q,dz = H (21)
0

We reduce this equation to the equivalent differential equation with the

corresponding initial condition. Next we have
_ _ 4 V2G4 _
0 =E(F +GAP(F + Gae | et 22)

The possibility of constructing of subsequent approximations for the
solution of this equation for values of t is evident.

Then the contact temperatures T,” and T, for small and large values of
time can be found by formulas (16), (22), and (5).

Let us take note of the fact that the contact temperatures are maximal
when t=0. This is the defect of the qusi-stationary statement of the
problem. However the contact temperatures reach maximal values for very
small relative time. Then they begin to diminish to T, and zero slowly. This
occurs due to the fact that q(t) tends to zero and the contact
thermoresistance tends to infinity.
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Conclusion

When one solid body is slid on another, the temperature in the vicinity
of the interface will tend to rise smoothly with time. Wear of the surfaces
has been associated with thermal stresses. The appearance of such a
disturbance has been attributed to a kind of instability where the material in
the vicinity of a heated asperity expands and relieves the surrounding region
of load, thereby increasing the heating of the region.

Summary

The quasi-static plane problem of uncoupled theory of thermo
elasticity for rough coverings of rigid bodies with regard for friction
heating and wear are considered. Non linear Volterra’s equation for
the pressure is obtained. In special case the asymptotic solutions of this
equation for small and large relative time are found. The phenomenon
of the thermal instability is described and examined.
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