К РАСЧЕТУ ТЕПЛОПОТЕРЬ НА ИНФИЛЬТРАЦИЮ ВОЗДУХА ДЛЯ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Лужанская А.В., Рябова Е.А. (Одесская государственная академия строительства и архитектуры)

Расход тепла на нагрев вентиляционного воздуха по [2] для производственных помещений достигает 116% от общих теплопотерь [1]. При выполнении требований [4], учитывающих воздухопроницаемость ограждений, теплопотери на инфильтрацию наружного воздуха значительно снижаются.

В [1] нами выполнены расчеты теплопотерь производственного здания различных размеров, при этом расход тепла на нагрев вентиляционного воздуха по [2], составляет от 29,4 до 116%, в зависимости от количества наружных стен. Полученные результаты значительно выше рекомендуемых [3], где оговорено — теплопотери на нагрев вентиляционного воздуха (инфильтрацию) допускается принимать равными 30% от основных теплопотерь через ограждения. Поэтому нами выполнены повторные расчеты с учетом воздухопроницания ограждающих конструкций [4].

Требуемое сопротивление воздухопроницаемости световых проемов R_{gH} м² ч Па/кг:

$$R_{gH} = \frac{(\Delta p / \Delta p_0)^{2/3}}{G_H},$$
 (1)

где $\Delta p_0 = 10$ Па — разница давлений на наружной и внутренней поверхностей ограждающих конструкций; G_H — допустимая воздухопроницаемость световых проемов производственных зданий, $G_H = 10$ кг/(м²ч); Δp — расчетная разность давлений, Па

 $\Delta p = (H - h_i) (\gamma_H - \gamma_B) + 0.03 \gamma_3 v^2 \beta_{\nu}. \tag{2}$

где H — высота здания, м; h_i — расстояние от уровня пола 1 этажа до середины ограждающих конструкций этажа, м; $\gamma_{\rm H}$, $\gamma_{\rm B}$ — плотность наружного и внутреннего воздуха:

$$\gamma_{\rm H} = 3463 / (273 + t_{\rm H}), \qquad \gamma_{\rm B} = 3463 / (273 + t_{\rm B})$$
 (3)

где $t_{\rm H}$ – температура наружного воздуха, °С,; $t_{\rm B}$ - температура внутреннего воздуха, °С, ν - максимальная из средних скоростей ветра по румбам за январь, повторяемость которых составляет 16% и больше

[5]; β_ν – коэффициент, учитывающий изменение скорости ветра по высоте здания.

Расход воздуха при инфильтрации определяется: -для окон:

$$G_u = 0.21 \sum F_o \left(\frac{\Delta P}{10}\right)^{2/3} \cdot G_H \tag{4}$$

где Fo - площадь световых проемов,

-для наружных проемов:

$$G_{\rm m} = F_{\rm m} (2\rho_{\rm H} \cdot \Delta p/\Sigma \xi)^{0.5} \tag{5}$$

где $F_{\mathfrak{m}}$ — площадь щелей наружных проемов; Δp — разница давлений между внутренним и наружным воздухом; $\Sigma \xi$ — сумма коэффициентов местного сопротивления щели; $\rho_{\mathfrak{n}}$ - плотность наружного воздуха

Расход тепла через окна Q_{μ} и щели наружных проемов Q_{μ} определяется по формуле:

$$Q=0.28(G_{H}+G_{III}).(t_{B}-t_{H})$$
 (6)

Выполнен расчет теплопотерь с учетом воздухопроницания ограждающих конструкций производственного одноэтажного помещения для района строительства г. Одесса (количество градусо-суток отопительного периода 2805, третья температурная зона). Помещение: высота — 7,0 м, сетка колон 6х6 м, количество пролетов от 2 до10, количество наружных стен от 1 до 4. В стене, ориентированной на Север, в одном пролете предусматриваются двери размером 3х3 м, во всех остальных пролетах — окно размером 3х3 м. Температура наружного воздуха -18 $^{\rm 0}$ С, температура воздуха в помещении +17 $^{\rm 0}$ С (минимальная из оптимальных, для категории работ IIa). Пол — неутепленный. Теплотехнические характеристики ($R_{\rm q}$ min , м $^{\rm 2}$ К/Вт) ограждающих конструкций приняты по [4]. Окна и ворота расположены только на северной стороне, когда условия наихудшие: 19% повторяемость ветра и скорость 6,2 м/с [5]. Результаты расчета общих теплопотерь и их составляющих приведены в таблице 1.

Анализ выполненных расчетов показал, что потери теплоты через щели ворот и воздухопроницание через окна составят для помещений с одной стеной от 7 до 98%, а при увеличении количества наружных стен до четырех от 5 до 41%. Следует отметить, что, в [4] приведены данные по сопротивлению теплопередаче только для стеклопакетов, в то время когда в промышленных зданиях обычно используются и другие конструкции (табл.2). На основании полученных данных считаем возможным для зданий промышленного назначения применять данные, представленные в СНиП II-3-79** «Строительная теплотехника», отмененном в 2006 году, и учтенные в Российском законодательстве [6], представленные в таблице 2.

Таблица 1 – Теплопотери помещений с учетом инфильтрации

воздуха через световые проемы

воздуха че					1240				
Наружные	Размеры помещения в плане, м 1 наружная стена (север)								
ограждения	-	18x18	Name and Address of the Owner Work			12×12	48x48	54x54	60x60
C 011	_	18	-					72	81
F ok	9	127	-	254				508	571
Qu Qn [41]	63			37243					127552
Qa [1]	8436			-					0.45
	0,75	1	-1	37497	1	,		-	128123
Qa+Qu	8499			-					8200
Qщ	8200	8200						7,79	6,43
	97,20		-		-			8708	8771
Qи+QЩ	8263					13		8	7
1	98	52		23	17				136323
Qзд		24251	33916	45697	59592	73003	93720	113300	130323
2 наружные			400	054	047	204	444	508	571
Qи	63	127		254	317				
Qa		21905	-						147700
Qок% от Qа	-	0,58	0,57	-	,		- 1	0,41	0,39
Qa+Qu	-	22032							148271
Qщ	8200	8200	8200		8200	8200	8200	8200	8200
Qщ% от Qа	66,16	37,43	24,45		,	10,11	8,10	6,65	5,55
Qи+QЩ	8263	8327	8390	8454	8517	8581	8644	8708	8771
(Qи+Qщ)%	67	38	25	18	13	11	9	7	6
Qзд	20721	30359	42112	55980	71963	90045	110273	132601	157043
3 наружных	стены				- 35				
Qи	63	127	190	254	317	381	444	508	571
Qa	17562	27927	41537	57334	75132	95029	117285	141509	168093
Qи% от Qа	0,36	0,45	0,46	0,44	0,42	0,40	0,38	0,36	0,34
Qa+Qи	17625	28054	41727	57588	75449	95410	117729	142017	168664
Qщ	8200	8200	8200	8200	8200	8200	8200	8200	8200
Qщ% от Qа	46,69	29,36	19,74	14,30	10,91	8,63	6,99	5,79	4,88
Qи+QЩ	8263	8327	8390	8454	8517	8581	8644	8708	8771
(Qи+Qщ)%	47	30	20	15	11	9	7	6	5
Qзд	25889	36381	50118	66042	83967	103991	126374	150725	177436
4 наружные	стены	E141 (6) 15	10/1.50	Tall I of the	1 1 14-	MI (Palife	g'ademi	Tage Surfe	5 1481130
Qи	63	127	190	254	317	381	444	508	571
Qa	20220	33779	49453	67241	87145	109028	133296	159544	187906
Qи% от Qа	0.31	0.38		-	0.36	0,35	0,33	0,32	0,30
Qa+Qи	1			1	87462	109409	133740	160052	188477
Qщ	8200	8200	8200	8200	8200	8200	8200	8200	8200
Qщ% от Qa			16,58	-	9.41	7,52	6,15	5,14	4,36
Qu+Qщ	8263	8327	8390	8454	8517	8581	8644	8708	8771
	41	25	17	13	10	8	6	5	5
Qзд			E0024				142205	168760	197249

Таблица 2- Приведенное сопротивление теплопередачи окон [6]

Zanonuaura agamagaga ungarra	R ₀ , м ² К/Вт, для переплетов			
Заполнение светового проема	деревянных или ПХВ	алюми- ниевых		
1. Двойное остекление в спаренных переплетах	0,40	- March		
2. Двойное остекление в раздельных переплетах	0,44	0,34*		
3. Пустотные стеклянные блоки:- размером 194 х 194 х 98 мм- размером 244 х 244 х 98 мм	0,31 (без переплетов) 0,33 (без переплетов)			
4. Профильное стекло коробчатого сечения	0,31 (без пере	плетов)		
5. Двойное остекление из органического стекла	0,36	- NE		
6. Тройное остекление в раздельно-спаренных переплетах	0,55	0,46		
7. Однокамерный стеклопакет из стекла:	aford on d has			
обычного	0,38	0,34		
с твердым селективным покрытием	0,51	0,43		
с мягким селективным покрытием	0,56	0,47		

Выводы

- 1. Расчет теплопотерь на инфильтрацию необходимо выполнять на основании требований ДБН.В 2.6-31:2006 "Теплова ізоляція будівель"
- 2. В зданиях промышленного назначения применять окна СНиП II-3-79** «Строительная теплотехника».
- 1. Лужанская А.В., Рябова Е.А. К расчету теплопотерь на нагревание вентиляционного воздуха. 1 Сборник студенческих научных работ ИИЭС Одеса, ОГАСА, 2008, 32-34 С. 2. Изменение №1 к СНиП 2.04.05-91 "Отопление, вентиляция и кондиционирование"-К.: Госкомградостроительство України. 1998., 19 с. 3. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление./Н.В. Болословский и др..; Под ред. И.Г. Староверова и Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1990.-344 с. (Справочник проектировщика). 4. ДБН.В 2.6-31:2006 "Теплова ізоляція будівель" К.: Мінбуд України. 2006., 66 с. 5. СНиП 2.01.01-82 «Строительная климатология и геофизика» М.: Госстрой СССР., 1982. 125 с. 6. СТО 17532043-001-2005 23-101-2004 «Нормы теплотехнического проектирования ограждающих конструкций и оценки энергоэффективности зданий» -М.: Стандарт организации. Российский РНТО строителей. 51 с., 2006.