V]IK 539.3

THE THERMOELASTIC CONTACT PROBLEM
FOR A CYLINDER

Gavdzinski V.N. (Odessa State Academy of Building Engineering and
Architecture, Ukraine), EI-Sheikh M. (Ain Shams University, Cairo,
Egypt), Maltseva E.V. (Odessa National Economic University, Ukraine)

The contact problem of symmetric indentation of two punches in the
form of circular segments, without friction, into the exterior surface of a

cylinder under harmonic force P = Poe’i‘”t and the temperature field
defined in [1] is considered.

Assuming that the radius of the cylinder in unity, in view of the state-
ment of the problem, the boundary conditions considered here are

v(1,0,t)=ve ™, if Bel} 1)
c,(1,6,1)=0, if 6T, @)
761 0,1)=0, if 0e[-m, 7], (3)

where T} =[—ay, o] U [t—ag, m+0ag] and T, =[-m, 7]/ T} In addi-
tion, the stresses o, and T,y as well as the displacement v, , are bounded
as r—0.

As a requirement of the solution of this problem, the normal contact
stress o, as well as the amplitude v, of the vibration are to be found. The
substitution for the components of the displacement by the expressions:
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where @ and ¥ are the wave potentials, into the equation of motion in
displacements [2], leads to the equations:
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where mzl—ocT; ot is the coefficient of thermal expansion

012 =2G/ p(1-v), c5=G/p, G is the modulus of elasticity, v is the
Poisson ratio, p is the density.
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The potentials @ and W can be thought of in the form

@(r, 0,1)=®"(r, 0™, ¥(r,0,t)=¥"(r,0™, ()
where V2@ +a?® =mT, V¥ +p?¥ =0, @)
W W
o=—, B=—,
G C2

and consequently the substitution of (4) into the Hooke law yields
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2G ror r<) oo or 2
The boundary conditions (1) and (2) can be completed as follows:
> c.(1,0
Gao=v @)y TR0y ) @
where
(0)- 0, Oel; (0)- undetermined, @ € /7
V47 undetermined, 9 e 1’ =¥, el
Vg, el
v (0)=1" = (12)
O, GGFZ

In the same way as in [3], the corresponding hyperbolic type mixed
problem is converted to a discrete Riemann problem which in turn is re-
duced to the singular integral equation with Hilbert kernel

Agp <
Babfoote-0y._(ehe =23 50w, sin 200+ £45(0). (19
—ap n=1
where
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e is the Euler number;
1
K&P =B, —n?Q,, and additionally [P = K& = o(n—zj(n —5 ).

The Hilbert-type integral equation (13) can be inverted in the class of inte-
grable functions [4], with the result

qf_(e)zﬁx(e)[maﬁ(eﬁ2§lF§fV2n(9)W2n_+aocose} 1)
where
_1e X()fap(s) _ 1% X(g)sin2ng )sm2n§
e (0) r L) sin(£-0) d&, Vanl0) _L) sin(&—0) de.

X (0) = /2(cos 26 — cos 2 ).
The application of the finite Fourier transform to (14) leads to the fol-
lowing infinite system of linear algebraic equations:

AggPon_ =2 TsP Ny Py + M +agR, (n e N+) (15)
k=1
where
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In view of [3] coefficients N, and R,, can easily be found

1 k
Nnk = Z Zoukfm(cosz% )[men (COSZQO)"' I:)ern(COSZO'O )]' (16)
m=

de.

-

R, =%[Pn (cos2ay )+ P,_;(cos2a )}

where po(cosog)=1 py(cosag)=—cosay,

1, (cosay )= Pee2(€05%0 ) Rilcosag) 5 5 )
2k -1
The functions Pn(cosao) are the Legendre polynomials which can be
defined by the formula:
ag co{n + ;)e
P, (cos%): j de. 17)

- X

Since system (15) can in general be solved approximately, namely using
the method of truncation, we set up function spaces and sequence spaces.

The solutions (14) of equation (13) is in Lp(—ao, ao), where 1<p<%

[5]. Consequently the Fourier coefficients W¥,_ will belong to Ip where
p= p/(p—l) [5]. Thus we will work in the space 1, (p > 4) with the norm
j%

el =( Spen a9

where ‘{’:{‘I’n_}nzofw. The justification of truncating system (15) is a

simple consequence of the following theorem whose proof is similar to that
given in [6] for the case p=2
Theorem. Suppose that:
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1. the homogeneous system corresponding to system (15) has only trivi-

al solution in Ip;
-1
p/(p—l)jp

2. Z(Z‘FZOLI(BNnk
n=0\ k=1

0
3. Z|Rn|p <o0.
n=0

Than the infinite system (15) has a unique solution in Ip . The truncated
system will also have a unique solution and the following estimate holds:

( )p71 1/ p
0 0 p/(p-1
v, <o S [ |
p n=N+1\k=1

o 1/ p

Z|Rn|p (19)
+Q2 n=N+1

<p |P

>Rl

n=0

where Q; and Q, are constants.

We shall assume that the frequency w differs from those values for
which the homogeneous system corresponding to (15) has nontrivial solu-
tions. The fulfillment of the second and the third conditions follows from

(16) and (17) for n =Kk together with the formula:

n+1
Ny = _Z(n—tk)[Pn (cos201 )R 1 (c082010) -, (20)

—P,1(cos20, )P (cos2ay)], k=1, n=k
with the estimate

P (cowojg[g)m; (0<ag<m n=12,.) (1)
" T \/ﬁsinao

Thus, we have
C C

|Nnk|~m and Rn ~ﬁ (21)
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Therefore, conditions (2) and (3) are satisfied as p>4. Recall that

FISB ~ O(k_z). Additionally, we have

C

-], “(Ne2)P 2 22)

p
Thus the approximate solution of the singular integral equation (13) is
given by:
1 N
v_(8)= —{maﬁ (0)+ 23 T3PV, (0) W, + a9 cose} (23)
ApX(0) =}
where ,,,_ are the solutions of system (15) truncated at the Nth order.

The equivalence condition for the approximate solution (23) can be writ-
ten in the form:

- A(’)cll(a)+ 2 % A;n I én(O‘)+ 2in B;n I 2n(B)+ A
n=1

The quantity ag included in (23) is still to be defined. In fact the equa-
tion of motion of the punch is [7]

2 i
% = e_'Wt (PO - PR) (25)

where M is the mass of the punch. P, the amplitude of the force acting on

aT (@, 0):\,0 )

the punch, and Py the reaction of the elastic cylinder:

O O
Pr=— Jo,(16)d0=—2G [y (o)do=—25%T
—Qo —Qo AOLB
Substituting the expression v, = voe_th into (25) we have
- MW2V0 = PO + 2G aO T (26)
Aop

Thus, the amplitude vy and the quantity a, can be calculated from
equations (24) and (26).
Using formulas (11), (23) we get the expression for the contact stress
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o(r, )= o 1,0, ) 226 T
Ay 2(c0520 —cos2a)

(27)
N
-{maﬁ (0)+ 23 T3PV, (0) W, +ag cose}
n=1

The real values w for which v, (1, 0 —>oo), the resonance frequencies,

are the real roots of the resonance equation which for n=0 assumes the
form:

1—
Il(oc)——uoc lo(a)=0 (28)
1-2v
where |g and I, are Bessel functions of he first kind. On supposing that

W, . .
o =— is large and making use of the asymptotic formulas:

G
lo(a)= 1/i Co{a—£]+0(i} |1(OL)=1/£ Sin(a—ﬁ}rO[ij,
oL 4 o oL 4 o
the roots of equation (28) are o = 3%1 +km or w= 01[3% + knj .

Let w=—=01 N=25 v=03and M =1
C2

The values of the contact stress p(é, r)/ P, are exhibited at different

values of the dimensionless coordinate éz@/oco when the dimensionless
time t=tc; =2n. If p=>5 then the estimation of the error is subjected to
the inequality:

<<
I, 3,278

Although this upper bound on the error still seems far from a value
which would ensure precision of the contact stress, the values shown in the
table remain stable to the first three decimals when N increases beyond the
25" order:

fr-v')

é 0,1 0,2 0,6 0,9 0,95 0,99
p(g; 2,,)/ P, | 06371 | 06681 | 08236 | L1874 | 14871 |31635
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Note that the values of the contact stresses increase unboundedly at the
vicinities of the end points of the contact interval.

CONCLUSION
On choosing the number N and using the formula (27) we can get an ap-
proximate solution of the problem to find a contact stress up to any pre-
scribed accuracy.

SUMMARY
The problem is formulated into a singular integral equation of Hil-
bert type, its solution providing an expression for the physically im-
portant unbounded normal stress. The integral equation is converted
into an infinite system of algebraic equations the solution of which can
be obtained by means of truncation method. The truncation is justified
and the error is estimated.
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