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T'his paper presents a method for the investigation of the boundary
value problem indicated below which corresponds to the first funda-
mental problem of the thermoelasticity. With the aid of the integral
representation this problem was reduced to the singular integral equa-
tion.

T'he necessary and sufficient conditions for the solvability of this equa-
(ion were obtained. ¢

1. Let the anisotropic with respect to elastic and thermal properties body
occupies the connected domain D of the plane x,y, bounded by smooth,
closed contours Ly, L,,.., L,,L ,; not intersecting one another of
which L, ,; contains all the others. The positive direction of L, will be
such that D lies to the left when L, is described in that direction.

Let the external stresses be given on the contours L, . Besides we sup-
pose, that the solid is subjected to the steady — state temperature field
T(x,y).

The temperature field is governed by the following equation [ 1]

2 2 2
T T
axz ax ay2
where k;; — coefficients of thermal conductivity.

The temperature on the closed contours L, is thought to be given. In the
presence of three planes of thermal symmetry at every point the coefficient
k,, is equal to zero.

The general solution of equation (1) 1s expressed in terms of an arbitrary

analytic function F of the complex variable Z; = x+m’y by the formula
T=2ReF(Z;), (2)

where a m” is one of the complex roots of the characteristic equation
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ky,m* 4+ 2kom* +kyy =0 (3)
The solution of this problem is reduced [2], [3] to finding three analytic
functions ¢;(Z,),$,(Z,).F(Z3) of the complex variables Z; = x +s,y,
Z, =x+8,y, L, =x +m'ys;
s; and s, complex roots of the characteristic equation [2].
Complex variables Z,, Z,, Z4 change in the domains D, D,, D3 ob-

tained from the domain D by the corresponding affine transformation.

m+1
Denote images of L, L = ¥ L, for these affine transformations by
k=1

i, 1(i=1,2,3)
On the boundary the functions <b1 (Zl) $»(Z,),F(Z3) satisty the bound-
ary conditions

2Re[F(t3)]:f(t)+g(t); (4)

2Re[ 6, (t;)+0,(t2) +w(ts) | =1 () + g, (t)“*milcs)ﬂk (t)

2Re| 5,0y (1)) + 5202 (1) +m*w(ts) | =0 (1) + g5 (£) + ki cg, (1)
(tel), (5)

where t is a boundary point of the domain D ; t,, t,,t; are corresponding

boundary points of the domains D,, D,, D3; B, (t) are harmonic func-
tions. On the contour they assume the following values;

B, (t):;l for te Ly,

0 on remaining contours.
f(t) is the temperature given on the contour L f,(t), f,(t) are ex-

pressed in terms of the vector of external forces (Xn X Yn) in the following

manner

A *EYH (s)ds, f,(t)= _zxn (s)ds;
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(':") (i~ 1,2) are real constants that must be defined; the Aunctions

k(1) g, (l) gz(t), are of the form

g(t)= ¥ Re[Ak In(t; -Zs, )]

k=1

g (1) = 2;1 Re| B, In(t, ~Z,, ) +C, In(ty - Z,, ) |
m

g5 (t) = El Re[s]Bk In(t1 — 2Ly ) +8,C, ln(tz ~ gy )],

am e 1,2,3) are points arbitrary chosen within contours le Lk, Ly ;
real constants A are expressed in terms of dislocation’s characteristic [3].
Complex constants By, C, are linearly expressed in terms of X, and ¥,

| 4], the function w(Z3) ts given by the formula [5].

B E,|F(Z;)dZ,
) e )
where E, = al (th;m —oqm . +a2)
11

In the boundary condition (4) changing t5 , to «, (t) we shall have

ZRe{F[-:JLl t)]} f(t)+g(t) (7)
On multiplying both sides of equation (7) by the real regulating multiplier
R(t) [6] we reduce it to the form

2Re{F[a, (t) |R(t)} = R(t)[ (1) +g(t)]. (8)

Since F [‘a, (Z)]R(Z) is an analytic function then it is possible to define it

by means of Shwarts operator according to the formula

1 jE?M(Z ,T)
£ o

Flo, () |R(Z)=-

o Re{P[al ] (0)}(!0, (9)
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where © - t(o) 18 the complex coordinate of a point of the contour, n 15
the interior normal, M (Z, t) is the complex Green’s function.

Knowing the function F(ZJ) , by formula (6) we find the analytic func-
tion w(Z3).
Eliminating after that ¢2*(t2) from the boundary conditions (5), we obtain

d)z (t2)=a¢1 (t1)+b¢1(t])+0(t1) (tl EI}), (]0)
where a:;;_il_, b:sz_f_}_;
N3 % 52 78,

¢(t;) is the known function expressed in terms of f, (t), g (1), w(t;) and

m-+1

ka Cl(ci)ﬁk (1) (i=12).

Replacing in the boundary condition (10) t; by t and t, by o t) we
have the problem: to find two analytic functions ¢,(Z,), ¢,(Z,) in the

domains D,, D, as well as constants C,(:) under the boundary condition

0y [a(t)] =20 (t) +by () +c(t) (tel') (11)
. a(t):(szuslltj@—sz)t;

the function ot(t) homeomorphically the contour L onto the contour s
and preserves the direction of the circuit.

2. Consider problem (11) in the general statement.
Let two complex planes Z, = x, +iy, and Z, = x, +iy, be given and

Z,= a(Zi) is the homeomorphism preserving the orientation of the Z,

plane onto the Z, plane. We take a (m +1) — connected domain D, in the

Z, plane bounded by the Ljapunov contour L' consisting of closed smooth

non-intersecting contours L'l., le, - le, L]rn +1 Of which le_” contains

all the others.
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et the domain D, bounded by smooth closed contours

lI I; - L. L2 m+1 ot intersecting one another, the last of which en-
closes all the others and corresponds to the domain D, under the transfor-
mation Z, = (I.(Zl) :

Assume that a derivative a'(t) is deferent from zero H-continuous.

let us consider the following boundary value problem: to find two func-
tons ¢y (Zl) , §sy (Zz) analytic in D; and D, and H-continuous in

D, 1] according to the boundary condition
da[a(t)]=a(t), () +b(t)o, () +c(t) (tel'),  (12)

where the functions a(t), b(t), e(t) satisfy the Holder condition on L]f

It is possible to prove the following lemma.
Lemma: If a(t) preserves the direction of the circuit on L', then the

functions ¢ (Z,), ¢,(Z,) analytic in D; and D, can be represgnted in

the form
¢1(Zl):ﬁ;£li( )Z_l _L{nq;(t [l+la t)‘]
(Z, e D,)
i)~ A o) Jdo
(Z,eD,), (13)

where o is the arc coordinate of the point T on the contour L'; B(1) is

the inverse of the function a(t) , the density tb(t) is determined to within a

m-1
constant term of the form ¥, A, B, (t), where A, are arbitrary complex
k=1

constants.
With the aid of the integral representation (13) we reduce the boundary
value problem (12) to the singular integral equation
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------ 1| o(7)

L+b(1)o(1)+a(t)o(t)+ Tl:iljl () -a(f)
()7 (o) |,

B()7(0) |y g, 20 [ ¢ (T?F'mm,( NE

(R | g |1 T~
o' ()

XJ ¢(r)[1;|a'(r)[]dcs+a(t)]d{ o(t)
‘(1) ]do = e(t) (tel!). (14)

The index of this equation over the field of real numbers is equal to 2ind
b(t) [6]. The boundary condition of the problem adjoint to (12) is written in
the form

wi (1) =a(t)a’ () we [a(6) [+ b()t2 ()’ (1) wy[a(t)]
(teL;) (15)

Let 1 and I’ be the numbers of linearly independent solutions of the ho-
mogenous problem (12) and the adjoint problm (15) then it be shown that

I -1' = 2ind b(t)-2m+2. (16)

For solvability of equation (14) it is necessary and sufficient that there
hold the conditions

Re [ ¢(t) ng) [a(t)]a'(t)dt =0 [B=lil') (17)
LI

where {\pgk) (t)} is the complex system of linearly independent solutions

of the adjoint problem (15).

3. Let us apply the results obtained in 2. for the investigation of the
boundary value problem (10) which corresponds to the first fundamental
problem of the thermoelasticity. As in this case b(t) is a constant, then ind

b(t) =0 and hence
I'=14+2m-2. (18)
Let us find 1. By virtue of the uniqueness of the solution of the first ba-

sic problem of the thermoelasticity the homogenous problem (10) has the
solution

b;i(Z;)=iAn; Z;+B; (i=12), (19)
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where h; are known coustants [3]; A is a real constant and B j are complex

constants. The constant B, , ts determined by the boundary conditions

Re{dy (0)sf" 51 '8 [a(0) ]} ;. (20)

where Cj are real constants.

The constant A, B, =B; +iB; remain arbitrary and so the number of

linearly independent solutions of the homogenous problem (10) is 1=3.
Hence the number of linearly independent solutions of the adjoint problem

(15)1s 1"=2m +1 . Let us establish the solvability conditions of the problem
(10). From the formulas (17) it follows that the solvability conditions are of
the torm

Re | c(t)w(zk)[a(t)]a'(t)dt =0  (k=1,2,.,2m+1). (28)
Ll
The functions c(t) 1s expressed linearly in terms of real constants

C! (k=1,2,...m+1) which must be determined.

The conclusion. .
The obtained results permit to show that the system (20) has a solution
when the resultant moment of external forces is equal to zero.
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