УТЕПЛЯЮЩИЙ ШТУКАТУРНЫЙ СОСТАВ НА ОСНОВЕ ГИПСА И ПЕРЛИТА

Колесников А.В., Керш Д.В., Гулько Р.А., Керш В.Я.

Одесская государственная академия строительства и архитектуры

путей внедрения энергосберегающих технологий, Олним из особенно актуальных в настоящее время, является применение в строительстве и при модернизации зданий теплоизолирующих штукатурных покрытий разных видов. При подборе составов таких смесей возникает ряд принципиальных проблем, важных как при проектировании, так И эксплуатации. Это, прежде необходимость учета и оптимизации почти антагонистических требований. Так, при добавлении теплоизолирующего заполнителя, уменьшение теплопроводности смеси сопровождается снижением прочности, в том числе - адгезионной. Для преодоления этого и других сложных аспектов проектирования предложена методика получения теплоизоляционных материалов с заданными свойствами – прочностью более 1 МПа, теплопроводностью менее 0,1 Вт/(м*град), адгезией более 0,8 МПа.

Основой методики является использование эффекта увеличения прочности материала при введении структурирующей минеральной добавки [1]. В предварительных экспериментах на вяжущем марки Г5 были определены виды наиболее активных добавок, а также их количества. Наиболее активными оказались микросферы и метакаолин в количестве 5-10 объемных процентов. Действие этих добавок можно интерпретировать следующим образом. При смешении компонентов без добавок в присутствии воды формируется структура из частиц вяжущего и заполнителя. Введение активных добавок способствует частичному разрыхлению структуры и раздвижке частиц; при этом облегчаются процессы гидратации, большая часть воды переходит в химически и физико-химически связанную форму. Кроме того, при введении добавки возрастает скорость релаксации внутренних напряжений. Все эти факторы положительно влияют на прочность и адгезионные характеристики.

Эффект увеличения прочности материала усиливается при переходе κ вяжущему, исходно обеспечивающему большую прочность, например гипсу $\Gamma 10$.

Последовательные шаги проектирования теплоизолирующего материала схематически иллюстрируются на рис.1.

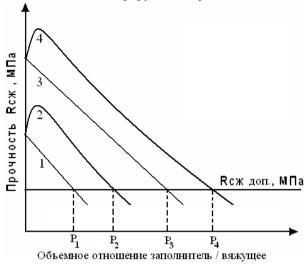


Рис.1. Схема подбора рациональных соотношений теплоизолирующий - заполнитель/вяжущее

Добавление перлитового заполнителя в случае гипса $\Gamma 5$ в отсутствие добавки приводит к быстрому снижению прочности (рис. 1, кривая 1) материала до минимально допустимого уровня Rcж доп., чему соответствует некоторое отношение перлит/гипс P_1 . На этом возможности улучшения теплоизолирующих свойств материала 1 истощаются. При введении минеральной структурирующей добавки наблюдается прирост начальной прочности материала (кривая 2). Допустимая прочность обеспечивается при большей доле заполнителя P_2 , следовательно - меньшей теплопроводности состава. Переход к вяжущему $\Gamma 10$ позволяет повысить критическую концентрацию заполнителя до значения P_3 (кривая 3). Максимально возможное количество заполнителя P_4 , соответствующее заданной прочности, можно ввести в смесь при использовании минеральной добавки (кривая 4).

Для снижения водопотребности смеси и увеличения прочности материала применена химическая добавка – пластификатор.

Основное назначение добавляемого стирол-акрилового латекса – положительное влияние на адгезионные и прочностные характеристики.

Его возможная функция — «вторичное» связующее, формирующее структурно устойчивые агрегаты второго порядка (рис. 2).

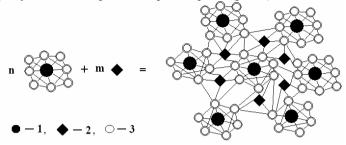


Рис.2. Влияние полимерной добавки.

1 – частицы основного вяжущего (гипс), 2 – частицы полимерного связующего (латекс), 3 – теплоизоляционный заполнитель (перлит)

На стадии предпланирования были определены основные влияющие факторы и уровни их варьирования – объемные отношения перлит/гипс, соотношение минеральных добавок – микросфер и метакаолина, количество добавляемого пластификатора и латекса (таблица 1).

Таблица 1

Факторы	V пер лит/V гипс	Умж*/Vобщ *100%	V(пласт)/V(гипс) *100%	Улат/Vобщ *100 %
Обозначения	пл	<u>МКС-</u> МК	Пласт	Лат
Максимум	20	5	1	2
Центр	15	2,5	0,75	1,5
Минимум	10	0	0,5	1

Опытные образцы изготовлены в соответствии с 4х-факторным планом эксперимента. Эксплуатационные свойства полученных образцов изучены с применением как стандартных, так и разработанных методик. Определены прочность на сжатие и изгиб, теплопроводность, а также адгезионая прочность.

Измерение адгезионной прочности осуществлялось, в частности, на установке, показанной на рис. 3.

Установка состоит из динамометра 1, опоры 2, образца 3 и его крепления 4, рычага 6, продеваемого сквозь проволочную петлю 5 и закрепляемого в опоре 2. Давление F_2 петли каркаса 5 на рычаг 6 в

точке В распределяется на две составляющие, одна из которых представляет собой реакцию рычага F_1 на прикладываемое усилие, другая — силу F_3 , значения которой и соответствуют указателю динамометра. При критическом значении прикладываемого усилия происходит разрушение адгезионного контакта. Полученные данные позволили перейти к этапу математического моделирования. Для каждого из свойств были построены регрессионные модели второго порядка, коэффициенты которых приведены в таблице 3:

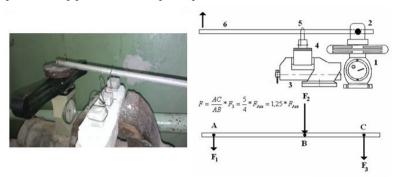


Рис. 3 Установка для измерения адгезионной прочности

Табпина 3

элица 5
езнонная
ность, Мпа
эффицие ити
= 0.268
= -0.206
= -0.047
= -0.067 = 0.066
= -0.062
= 0.194 = -0.050

Однофакторные зависимости приведены на рис. 4.

Показанные виды зависимостей позволяют провести качественную интерпретацию математических моделей и указать возможную роль компонентов в формировании микроструктуры материала:

1. Увеличение объемного отношения «перлит-гипс» (П/Г) при прочих равных условиях приводит к уменьшению плотности, снижению прочности, уменьшению теплопроводности. Это связано с уменьшением и разрушением кластеров из частиц вяжущего. При увеличении концентрации перлита происходит приближение к перколяционному порогу, небольшие кластеры вяжущего и полимера

контактируют друг с другом через малопрочные слои перлита. Такой материал приобретает желаемые теплоизоляционные свойства.

2 Латекс, благодаря межмолекулярным взаимодействиям, усиливает адгезионные свойства материала, уменьшает максимальную плотность и увеличивает минимальную, качественно также влияет на прочность на сжатие, т.е. играет в этих случаях стабилизирующую роль - возможно, заполняет участки с малой плотностью и поры. Влияние латекса на теплопроводность при высоких концентрациях перлита имеет сложный характер. Малые значения теплопроводности могут концентрации латекса высокой быть объяснены следующими причинами:

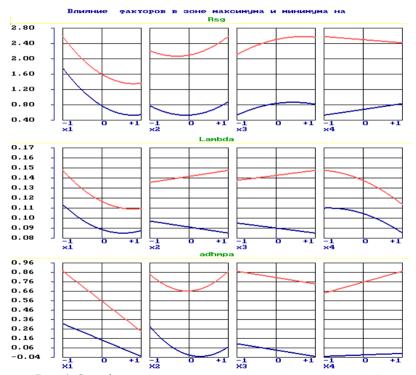


Рис. 4. Однофакторные зависимости эксплуатационных свойств материала: сверху вниз - прочность на сжатие, теплопроводность, адгезия

- а. Латекс увеличивает адгезию перлита к гипсу. Кластеры из вяжущего оказываются при этом менее разветвленными и изолированными друг от друга слоями латекс-перлит.
- b. Латекс образует чередующуюся структуру с перлитом, тепловые пути оказываются прерванными.
- 3. Преобладание метакаолина повышает плотность отсутствует разрыхляющее действие микросфер. На теплопроводность оказывает дестабилизирующее действие уменьшает минимум, увеличивает максимум. В остальных случаях для соответствующего фактора наблюдается зависимость с минимумом во внутренней точке, одна из составляющих должна присутствовать.
- 4. Пластификатор снижает количество свободной воды и увеличивает прочность на сжатие, прочность на изгиб характеризуется внутренним максимумом. Это классическое действие обусловлено способностью входящих в состав добавки молекул ПАВ к адсорбции на границах раздела кристаллов вяжущего и уменьшению интенсивности взаимодействия с молекулами воды. При этом часть воды отделяется, рост происходит медленно, с возможностью релаксации внутренних напряжений.

Вывод

Построенные математические модели свойств позволяют ставить и решать серию задач многокритериальной оптимизации, что является этапом дальнейшей работы в данном направлении.

SUMMARY

The principles of the structure formation of the heat insulating material on the example of gypsum-perlite mixture are examined. The properties of samples made in planning experiments, are investigated. The regression models of properties can be used to optimize compositions.

Литература

1. Керш Д.В. Облегченный гипсобетон для реконструктивных задач в городском строительстве / Керш Д.В., Фощ А.В., Марчук О.Н. // Мат.- ли МНПК «Енергоефективні технології в міському будівництві та господарстві», ОДАБА, 2011, с. 56-78.