ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПЛОСКОГО ПРОДОЛЬНО-ПОПЕРЕЧНОГО ИЗГИБА ЖЕЛЕЗОБЕТОНОЙ БАЛКИ С УЧЕТОМ ФИЗИЧЕСКОЙ И ГЕОМЕТРИЧЕСКОЙ НЕЛИНЕЙНОСТЕЙ

Фомин В.М. (Одесская государственная академия строительства и архитектуры, г.Одесса)

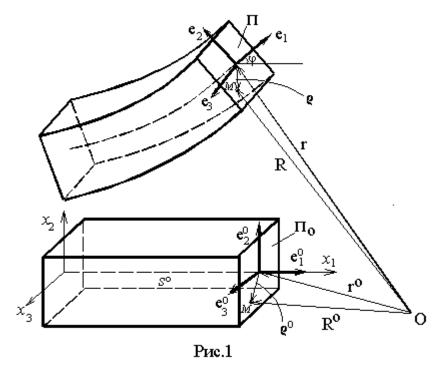
У статті [1] були запропоновані рівняння поздовжно-поперечного плоского згину балки з врахуванням фізичної й геометричної нелінійностей. При цьому ця нелінійність припускалась малою, що дозволило застосовувати при рішенні метод малого параметру. Число рівнянь залежало від кількості утримуваних складових в асимптотичному розкладенні рішення по малому параметру. У даній роботі побудоване диференційне рівняння вищевказаного згину без припущення, що нелінійність мала. У викладенні будемо дотримуватися означеної праці [1].

Исследуется деформация балки постоянного прямоугольного поперечного сечения, подверженной действию сил, лежащих в вертикальной плоскости симметрии ее поперечного сечения.

Радиус-вектор \mathbf{R}^0 точки $M(x_1, x_2, x_3)$ (ось x_1 направлена вдоль оси, ось x_2 вертикальна, а x_3 – горизонтальна) в недеформированном состоянии балки может быть представлен так:

$$\mathbf{R}^{0}(s^{0}, x_{2}, x_{3}) = \mathbf{r}^{0}(s^{0}) + \varrho^{0}(s^{0}, x_{2}, x_{3}), \, \varrho^{0}(s^{0}, x_{2}, x_{3}) = x_{2}\mathbf{e}_{2}^{0} + x_{3}\mathbf{e}_{3}^{0}, \, \underline{(1)}$$

где $s^0 = x_1$ - длина недеформированного отрезка оси балки между поперечным сечением Π^0 , содержащим заданную точку M, и левым концом балки; $\mathbf{r}(s^0)$ - радиус-вектор центра тяжести сечения K; \mathbf{e}_2^0 и \mathbf{e}_3^0 - два взаимно перпендикулярных орта в плоскости Π^0 , причем \mathbf{e}_2^0 лежит в плоскости изгиба, а \mathbf{e}_3^0 перпендикулярен этой плоскости.



Положение точки M после деформации определяется радиус-вектором $\mathbf{R}(s^0,x_2,x_3)$ следующим образом:

$$\mathbf{R}(s^{0}, x_{2}, x_{3}) = \mathbf{r}(s^{0}) + \varrho(s^{0}, x_{2}, x_{3}), \ \varrho(s^{0}, x_{2}, x_{3}) =$$

$$= A(s^{0}, x_{2}, x_{3})\mathbf{e}_{1} + B(s^{0}, x_{2}, x_{3})\mathbf{e}_{2} + C(s^{0}, x_{2}, x_{3})\mathbf{e}_{3}. \tag{2}$$

Здесь $\mathbf{r}^{(\mathcal{S}^0)}$ - радиус-вектор точки K после деформации; A,B и C - скалярные функции координат s^0 , s^2 , s^3 и s^4 ; - единичный вектор касательной к деформированной оси балки в точке K; s^2 и s^4 - два взаимно перпендикулярных орта в плоскости , перпендикулярной вектору , проведенные аналогично векторам и . Из (2) следует, что выполнение гипотезы плоских сечений не предполагается, т.к. первое слагаемое в правой части формулы для $\mathfrak{e}^{(\mathcal{S}^0, x_2, x_3)}$ дает смещение точки M в направлении, перпедикулярном плоскости \mathfrak{q} . Пренебрежем деформацией балки в направлении вектора \mathfrak{e}^0_3 . Тогда функции \mathfrak{q} и \mathfrak{q} будут функциями только координаты \mathfrak{q}^2 (конечно, кроме зависимости от \mathfrak{s}^0), а \mathfrak{q}^0 0 останется неизменной, т.е.

$$A(s^0, x_2, x_3) \equiv A(s^0, x_2), B(s^0, x_2, x_3) \equiv B(s^0, x_2), C(s^0, x_2, x_3) \equiv x_3.$$
 (3)

В пункте 1 работы [1] было показано, что отличные от нуля элементы тензора конечных деформаций $^{\mathbf{D}}$ определяются по формулам

$$\varepsilon_{11} = (\lambda_s^2 - 1 - 2\lambda_s^2 B \phi')/2, \ \varepsilon_{22} = (A_2^2 + B_2^2 - 1)/2, \ \varepsilon_{12} = \lambda_s A_2/2. \tag{4}$$

Здесь . $A_2 = dA/dx_2$, $B_2 = dB/dx_2$, $\lambda_3 = ds/ds^0$, $\phi' = d\phi/ds$

Предполагается, что связь между тензорами напряжений и деформаций подчиняется деформационной теории, в которой девиаторы напряжений и деформаций коаксиальны [2,3]:

$$\sigma_0 = 3K(\varepsilon_0, \gamma_0)\varepsilon_0, \mathbf{T}_1 = 2G(\varepsilon_0, \gamma_0)D_1 \tag{5}$$

Здесь \mathbf{T}_1 - девиатор тензора напряжений, а \mathcal{D}_1 - девиатор тензора деформаций, ε_0 , γ_0 - октаэдрические деформации.

Из (5) следует

$$\begin{split} &\sigma_{11} = K_{1}(\varepsilon_{0},\gamma_{0})\varepsilon_{11} + K_{2}(\varepsilon_{0},\gamma_{0})\varepsilon_{22}, \sigma_{22} = K_{2}(\varepsilon_{0},\gamma_{0})\varepsilon_{11} + \\ &+ K_{1}(\varepsilon_{0},\gamma_{0})\varepsilon_{22}, \sigma_{12} = 2G(\varepsilon_{0},\gamma_{0})\varepsilon_{12}, \end{split} \tag{6}$$

 $\Gamma_{\text{T}} = K_1(\varepsilon_0, \gamma_0) = [3K(\varepsilon_0, \gamma_0) + 4G(\varepsilon_0, \gamma_0)]/3, \quad K_2(\varepsilon_0, \gamma_0) = [3K(\varepsilon_0, \gamma_0) - 2G(\varepsilon_0, \gamma_0)]/3.$

Функции $A(s^0, x_2)$ и $B(s^0, x_2)$ ищутся в следующем виде:

$$A(s^{0}, x_{2}) = a_{1}(s^{0})x_{2} + a_{2}(s^{0})x_{2}^{2} + a_{3}(s^{0})x_{2}^{3},$$

$$B(s^{0}, x_{2}) = b_{1}(s^{0})x_{2} + b_{2}(s^{0})x_{2}^{2}.$$
(7)

Тогда

$$A_{2}(s^{0}, x_{2}) = dA(s^{0}, x_{2})/dx_{2} = a_{1}(s^{0}) + 2a_{2}(s^{0})x_{2} +$$

$$+3a_{3}(s^{0})x_{2}^{2}, B_{2}(s^{0}, x_{2}) = dB(s^{0}, x_{2})/dx_{2} = b_{1}(s^{0}) + 2b_{2}(s^{0})x_{2}.$$
(8)

Из равенства нулю касательных напряжений на верхней и нижней гранях балки следует

$$\varepsilon_{12} = 0_{\text{при}} x_2 = \pm h/2,$$
(9)

откуда находим, что

$$a_{2}(s^{0}) = 0, \ a_{1}(s^{0}) = -3h^{2}a_{3}(s^{0})/4, \ A(s^{0}, x_{2}) = -a_{3}(s^{0})d(x_{2}),$$

$$d(x_{2}) = 3h^{2}x_{2}/4 - x_{2}^{3}, A_{2}(s^{0}, x_{2}) = -a_{3}(s^{0})d_{2}(x_{2}),$$

$$d_{2}(x_{2}) = 3h^{2}/4 - 3x_{2}^{2}, \varepsilon_{12}(s^{0}, x_{2}) = -\lambda_{2}a_{3}(s^{0})d_{2}(x_{2})/2$$

$$(10)$$

(h - высота сечения балки).

Нормальные напряжения на верхней и нижней гранях также равны нулю:

$$\sigma_{22} = 0 \text{ при } x_2 = \pm h/2.$$
 (11)

Аналогично [1] из (11) получаем

$$\varepsilon_{11}(s^0, x_2) = \varepsilon_s(s^0) - x_2 \varphi'(s^0), \quad \varepsilon_{22}(s^0, x_2) = 2\varepsilon_{12}^2(s^0, x_2) - K_2(\varepsilon_0(s^0, x_2), \gamma_0(s^0, x_2))\varepsilon_{11}(s^0, x_2) / K_1(\varepsilon_0(s^0, x_2), \gamma_0(s^0, x_2)), \tag{12}$$

где $\epsilon_s(s^0) = \lambda_s(s^0) - 1$ - продольная относительная деформация балки. Будем полагать, что продольная сжимаемость балки мала, что позволяет принять $s^0 = s$ в дальнейшем изложении. Нетрудно убедиться, что

$$\begin{split} \varepsilon_{0}(s,x_{2}) &= \frac{1}{3} \{ [1 + \frac{K_{2}(\varepsilon_{0}(s,x_{2}),\gamma_{0}(s,x_{2}))}{K_{1}(\varepsilon_{0}(s,x_{2}),\gamma_{0}(s,x_{2}))}] [\varepsilon_{s}(s) - \varphi'(s)x_{2}] + \frac{1}{2} a_{3}^{2}(s)d_{2}^{2}(x_{2}) \}, \\ \gamma_{0}(s,x_{2}) &= \frac{1}{3} \sqrt{K_{5}(\varepsilon_{0}(s,x_{2}),\gamma_{0}(s,x_{2})) [\varepsilon_{s}(s) - \varphi'(s)x_{2}]^{2} + 6a_{3}^{2}(s)d_{2}^{2}(x_{2})}, \ (13) \\ K_{5}(\varepsilon_{0},\gamma_{0}) &= 4\{ [1 + K_{2}(\varepsilon_{0},\gamma_{0})/K_{1}(\varepsilon_{0},\gamma_{0})]^{2} + 1 + K_{2}^{2}(\varepsilon_{0},\gamma_{0})/K_{1}^{2}(\varepsilon_{0},\gamma_{0}) \}. \end{split}$$

Из (6) находим

$$\begin{split} &\sigma_{11}(s,x_2) = E_1\left(\varepsilon_0(s,x_2),\gamma_0(s,x_2)\right)[\varepsilon_s(s) - x_2\varphi'(s)] + \\ &K_2(\varepsilon_0(s,x_2),\gamma_0(s,x_2))a_3^2(s)d_2^2(x_2)/2, \ \sigma_{22}(s,x_2) = \\ &= K_1\left(\varepsilon_0(s,x_2),\gamma_0(s,x_2)\right)a_3^2(s)d_2^2(x_2)/2, \ \sigma_{12}(s,x_2) = \\ &= -G(\varepsilon_0(s,x_2),\gamma_0(s,x_2))a_3(s)d_2(x_2), \ E_1(\varepsilon_0,\gamma_0) = \\ &= K_1\left(\varepsilon_0,\gamma_0\right) - \frac{K_2^2(\varepsilon_0,\gamma_0)}{K_1(\varepsilon_0,\gamma_0)}, \ E_2(\varepsilon_0,\gamma_0) = K_2(\varepsilon_0,\gamma_0) - \frac{K_2^2(\varepsilon_0,\gamma_0)}{K_1(\varepsilon_0,\gamma_0)}. \end{split}$$

Главный вектор \mathbf{Q} внутренних усилий в сечении Π равен

$$Q = Q_{\delta} + Q_{\mu} + Q_{d} \tag{15}$$

где \mathbf{Q}_{δ} - главный вектор внутренних усилий в бетоне, \mathbf{Q}_{a} и \mathbf{Q}_{d} - усилия в верхней и нижней арматуре соответственно. Из условия равновесия участка балки между левым ее концом и сечением Π следует

$$\mathbf{Q}_{\dot{o}} + \mathbf{Q}_{\dot{u}} + \mathbf{Q}_{\dot{d}} = -\mathbf{R}_{A} \tag{16}$$

(\mathbf{R}_{A} - сила, приложенная к левому концу балки).

Проекции вектора \mathbf{R}_{A} на направления векторов \mathbf{e}_{1} и \mathbf{e}_{2}

$$R_{A,1}(s) = H_A \cos\phi(s) + V_A \sin\phi(s), R_{A,2}(s) = -H_A \sin\phi(s) + V_A \cos\phi(s). \tag{17}$$

Проектируя векторное равенство (14) на направление вектора e_2 , получим

$$Q_{b,2}(s) + Q_{d,2}(s) + Q_{d,2}(s) = -R_{A,2}(s)$$
(18)

Предполагается, что материал, из которого изготовлена арматура, в рассматриваемом диапазоне деформаций является линейно упругим. Из закона Гука следует

$$Q_{a,2}(s) = G_a \varepsilon_{12}(s, h_1) S_1, Q_{d,2}(s) = G_a \varepsilon_{12}(s, -h_2) S_2$$
(19)

где G_a - модуль сдвига материала арматуры, S_1 и S_2 - площади поперечных сечений верхней и нижней арматуры соответственно,

$$\varepsilon_{12}(s, h_1) = -a_3(s)d_2(h_1)/2, \ \varepsilon_{12}(s, -h_2) = -a_3(s)d_2(h_2)/2$$
 (20)

(${}^{h_{\!\!1}}$ и ${}^{h_{\!\!2}}$ - расстояния от центра тяжести сечения до верхней и нижней арматуры).

Проекцию главного вектора e_2 внутренних усилий в бетоне на направление вектора определяем из формулы

$$Q_{b,2}(s) = b \int_{-k/2}^{k/2} \sigma_{12}(s, x_2) dx_2$$
(21)

(*b* - ширина сечения балки). Из (12) получаем

$$Q_{b,2}(s) = -bG(\epsilon_0(s, x_2), \gamma_0(s, x_2))a_3(s)h^3/2$$
(22)

Из (18)-(22) и (14) следует

$$a_{3}(s) = R_{A2}(s) / H_{3}(s), H_{3}(s) = G(s)bh^{3} + G_{a}[d_{2}(h_{1})S_{1} + d_{2}(h_{2})S_{2}],$$

$$G(s) = \int_{-k/2}^{k/2} G[\varepsilon_{0}(s, x_{2}), \gamma_{0}(s, x_{2})]dx_{2}.$$
(23)

Проектируя (14) на направление вектора • находим

$$\begin{split} \varepsilon_{s}(s) &= \frac{H_{1}(s)\varphi'(s) - R_{A,1}(s)}{H_{0}(s)}, H_{0}(s) = b\tilde{E}_{10}(s) + E_{a}(S_{1} + S_{2}), H_{1}(s) = \\ &= b\tilde{E}_{11}(s) + E_{a}(S_{1}h_{1} - S_{2}h_{2}), \ \tilde{E}_{10}(s) = \int_{-k/2}^{k/2} E_{1}(\varepsilon_{0}(s, x_{2}), \gamma_{0}(s, x_{2})) dx_{2}, \end{aligned} \tag{24}$$

$$\tilde{E}_{1,1}(s) = \int_{-k/2}^{k/2} E_{1}(\varepsilon_{0}(s, x_{2}), \gamma_{0}(s, x_{2})) x_{2} dx_{2}.$$

Главный момент внутренних усилий в сечении Π относительно оси, совпадающей с направлением вектора e_3 , определяется по формуле

$$M_{3}(s) = M_{b}(s) - h_{1}Q_{u,1}(s) + h_{2}Q_{d,1}(s), \\ M_{b}(s) = -b \int_{-h/2}^{h/2} x_{2}\sigma_{11}(s,x_{2})dx_{2}. (25)$$

Нетрудно убедиться, что

$$\begin{split} M_{\delta}(s) &= -b[\varepsilon_{5}(s)E_{1,1}(s) - E_{1,2}(s)\varphi'(s)), \ E_{1,2}(s) = \\ &= \int\limits_{-k/2}^{k/2} E_{1}(\varepsilon_{0}(s, x_{2}), \gamma_{0}(s, x_{2})) x_{2}^{2} dx_{2}, M_{3}(s) = -\varepsilon_{5}(s)H(s)_{1} + H_{2}(s)\varphi'(s), \\ H_{2}(s) &= bE_{1,2}(s) + E_{a}(S_{1}h_{1}^{2} + S_{2}h_{2}^{2}). \end{split} \tag{26}$$

Из соотношения [1] $M_3^{\prime}(s) = -Q_2(s)$ следует

$$H_{5}(s)\varphi''(s) + \left[\frac{dH_{5}(s)}{ds} - R_{A,2}(s)H_{6}(s)\right]\varphi'(s) - R_{A,1}(s)H_{6}'(s) - R_{A,2}(s) = 0, \ H_{5}(s) = H_{2}(s) - H_{1}^{2}(s)/H_{0}(s), \ H_{6}(s) = H_{1}(s)/H_{0}(s).$$
(27)

Вывод

Равенства (13),(23),(24) и дифференциальное уравнение (27) представляют собой замкнутую систему уравнений для определения углов поворота поперечных сечений балки, а следовательно, и ее прогибов.

SUMMARY

Equalities (13),(23),(24) and differential equation (27) constitute closed system of equations to determine angles of cross section rotation of a reinforced concrete beam and as a result its deflection.

Литература

1. Фомин В.М. Уравнения плоского изгиба стержней с учетом физической и геометрической нелинейностей // Вісник ОДАБА. Вып. 24, — Одесса, 2006. — с. 273 — 287.

- 2. Ильюшин А.А. Пластичность. М: ГИТТЛ, 1948. 376 с.
- 3. Гениев Г.А., Киссюк В.Н., Тюпин Г.А. Теория пластичности бетона и железобетона. М: Стройиздат, 1974. 316 с.