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One of the most effective approaches to computational modeling of 

composite systems is the homogenization method [1]. A necessary condition for 
applying the homogenization method is the presence of a certain scale relationship 
between the components of the reinforced composite and the entire system [2]. 
Most often, two-scale analytical models are introduced, each of which is associated 
with a pre-set scale parameter. To implement the effective computational 
processes, this parameter is specified as a small value, namely, a real number 
(usually tending to zero). The impossibility of introducing more than two different 
scales for a local volume of a composite and, in addition, the insufficient sensitivity 
of the homogenized characteristics of the composite to the geometric 
relationships of scales can be attributed to the significant disadvantages of such 
methods [3].  

Wavelet analysis techniques can implement the multiscale ideology. Such a 
paradigm is a very modern and widely developed numerical method in signal 
theory, and, most importantly, performs the analysis of composite systems with 
several geometric scales. The multiscale technique can be considered as a more 
realistic analysis for most engineering composites, which allows for simultaneous 
analysis for different scales of microdefects, interface, reinforcement and the entire 
structure. It should be noted that wavelet analysis is a particularly promising tool in 
the field of reinforced composite materials, where it allows two goals to be 
achieved. The first goal is the possibility of constructing multiscale heterogeneous 
structures using fixed wavelets, which brings the description as close as possible to 
the real production process. Achieving this first goal allows for the analysis of 
experimental results on the morphology of the composite. The second goal is 
related to the multidimensional decomposition of the spatial distribution of the 
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composite material and its physical properties [4]. In this case, wavelets of different 
types are used for different scales. The multiscale strategy in this study is 
implemented to reduce and homogenize linear and unidirectional problems. For 
this purpose, a bounded linear operator 𝑆𝑗 ∶  𝑉𝑖  →  𝑉𝑗 is used. The quantity 𝑉𝑗 is 

covered by the translations of the function 𝜑(2𝑗𝑥 − 𝑘, 𝜆, 𝑝, 𝑞), 𝜆 = 𝑐𝑜𝑛𝑠𝑡, where p and 
q are vector-valued forcing terms. Therefore, this quantity can be represented as a 
matrix. The matrix is finite provided that the multi-resonator analysis is defined on 
a limited domain. Next step in multi-scale analysis is to use the relation 

𝑆𝑗𝑥 = 𝑓.                                                                     (1) 
 

The decomposition of 𝑉𝑗 = 𝑉𝑗+1⨁𝑊𝑗+1 leads to a partition of 𝑆𝑗 into four parts 
and, therefore, to the definition of the wavelet space 𝑊𝑗+1, which is the detailed or 
small-scale component of 𝑉𝑗) using the matrix equation 

(
𝐴𝑆𝑗 𝐵𝑠𝑗

𝐶𝑠𝑗 𝑇𝑠𝑗
) (

𝑑𝑥

𝑠𝑥
) = (

𝑑𝑓

𝑠𝑓
),                                                       (2) 

where: 
𝐴𝑠𝑗 ∶  𝑊𝑗 →  𝑊𝑗+1, 𝐵𝑠𝑗 ∶  𝑉𝑗+1 →  𝑊𝑗+1,  𝐴𝑠𝑗 ∶  𝑊𝑗 →  𝑉𝑗+1,  𝑇𝑠𝑗 ∶  𝑉𝑗 →  𝑉𝑗+1;  
𝑑𝑥 , 𝑑𝑦 ∈  𝑊𝑗+1, 𝑠𝑥 , 𝑠𝑦 ∈  𝑉𝑗+1. 

 
The multiscale homogenization procedure with parameter K was written as  

𝐵𝑥 + 𝑞 + 𝜆 = 𝐾(𝐴𝑥 + 𝑝),                                                     (3) 
 

𝐵𝑗 = 𝑑𝑖𝑎𝑔 {𝐼 + (𝐵𝑗)
𝑖
}

𝑖=0

𝑖=2𝑗−1
,                                                  (4) 

 

𝐴𝑗 = 𝑑𝑖𝑎𝑔 {𝐼 + (𝐴𝑗)
𝑖
}

𝑖=0

𝑖=2𝑗−1
.                                                  (5) 

 

The recurrence relations are local and can be carried out at as many scales as 
necessary. In the case of this work |the calculation method was extended for multi-
resolution coefficients up to 20. The analysis showed significant nonlinearity of both 
the real and imaginary parts of the homogenization parameter K. The main 
advantage of this calculation method is that this procedure allows the 
homogenization coefficients to vary in an arbitrary number of intermediate scales. 
This contrasts with classical homogenization examples that did not allow any 
intermediate scales. A general framework is constructed for multiscale reduction 
and homogenization. The multi-wavelet basis is implemented using the Haar-
wavelet for systems of linear ordinary differential equations. Since the Haar-
functions at a fixed scale have no overlapping supports, the recurrence relations for 
the operators and boost terms in the equation can be written as local relations and 
solved explicitly. 
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Summary and conclusions. The consequence of the application of the 
wavelet multiscale method was the calculation of probability moments of real and 
imaginary surfaces of effective homogenization parameters. As a promising 
direction, it is necessary to consider the possibility of determining the relations for 
homogenized coefficients in terms of volume fractions of layers, as well as the 
extension of the homogenization method to inhomogeneous multiscale media 
with a more general periodic geometry. The entire methodology can be adopted 
without any changes in stochastic reliability studies, where probability coefficients 
of effective properties or state functions can be used in calculations of the reliability 
index. 
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