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PREFACE 
 

Textbook “Physics course. Thermodynamics" is intended for students of higher 

educational institutions of specialty 192 "Construction and Civil Engineering". This 

study guide aims to provide an up-to-date and comprehensive coverage of the core 

curriculum in physics specified in the current Odessa State Academy of Civil 

Engineering and Architecture syllabus. 

Molecular physics and thermodynamics study macroscopic processes in 

bodies, i.e. such phenomena that are associated with a very large number of atoms 

and molecules that are contained in these bodies.  

Molecular physics proceeds from the idea of the atomic-molecular structure of 

matter and considers heat as the random movement of atoms and molecules. 

Molecular physics in the broad sense studies not only macroscopic phenomena. This 

science also considers the properties and structure of individual atoms and molecules. 

Thermodynamics is an axiomatic science. Thermodynamics is based on general 

principles. These principles are a generalization of a large set of experimental facts. 

Thermodynamics considers heat as a type of some kind of internal movement, but 

does not try to specify this movement. Thermodynamics is one of the most important 

parts of physics. The conclusions of thermodynamics are as reliable as the axioms on 

which this science is built. The consequences of thermodynamics are used in all areas 

of macroscopic physics: hydrodynamics, elasticity theory, aerodynamics, electrical 

and magnetic phenomena, optics and other branches of physics. Physical chemistry 

and chemical physics are engaged in applications of thermodynamics to chemical 

phenomena. 

The main content of modern physical thermodynamics is the study of the laws 

of the thermal form of motion of matter and related physical phenomena.  

Thermodynamic applications related to heat engines, refrigeration units and other 

heat engineering applications were allocated in an independent section. This section 

of thermodynamics is called technical thermodynamics.  

Thermodynamics, as a rule, studies only the equilibrium states of bodies and 

slow processes, which can be considered as almost equilibrium states, continuously 

following each other. In addition, thermodynamics studies the general laws governing 

the transition of systems to states of thermodynamic equilibrium.  

Molecular-kinetic theory studies a much wider range of phenomena associated 

with processes in bodies that occur at a finite speed. The section of molecular kinetic 

theory related to the properties of a substance in equilibrium is called statistical 

thermodynamics. The section of molecular kinetic theory that studies the processes in 

bodies that occur at a finite speed is called physical kinetics.  

Molecular physics should be based on the laws that govern atoms and 

molecules. Such laws are the laws of quantum mechanics. A complete and rigorous 

study of molecular physics without knowledge of these laws is impossible. However, 

a wide range of macroscopic phenomena is caused not so much by the structural 

details of atoms and molecules as by a very large number of atoms in macroscopic 

systems. The knowledge of quantum mechanics in the study of this kind of 
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phenomena is not mandatory, therefore molecular physics is usually studied by 

students after classical mechanics, but before quantum mechanics.  

The quantum nature of atoms and molecules should be taken into account when 

studying thermodynamic processes associated, for example, with heat capacity near 

absolute zero temperature. In these cases, a little preliminary information from 

quantum physics is enough. This information can be mentioned during the study of 

the basic principles of thermodynamics.  

The guide covers topics related to ideal gas model, Maxwell and Boltzmann 

distributions, gas laws, thermodynamics laws, effects in real gases and liquids, 

transport processes in gases and rarefied gases, thermodynamics of irreversible 

processes. Elements of the study guide include the following: 

 fundamental concepts of molecular physics and thermodynamics 

 test questions 

 problem-solving examples 

 problems 

 appendices. 

By the end of textbook "Physics course. Thermodynamics" students will be 

able to: 

 apply principles and concepts of physics to explain various phenomena 

 construct models and simulations to describe and explain natural 

phenomena 

 use mathematics as a precise method for showing relationships 

 solve problems by applying physics principles and laws 

 select and use appropriate technological instruments to collect data, 

 analyze data, check it for accuracy and construct reasonable conclusions 

 use precise scientific language in oral and written communication. 

It is well known that theoretical knowledge is useless without the ability to use 

it to solve practical problems. Therefore, the acquisition of problem solving skills is 

an integral part of studying the course of general physics. Currently, there are a 

sufficient number of collections of physical problems, but, unfortunately, there are 

practically no manuals intended for training in methods of solving problems. The 

material located at the end of each chapter of study guide is intended to remove the 

indicated disadvantage. This material is divided into three blocks. The first block 

contains test questions on the theoretical information that is present in the chapter. 

Examples of solving typical problems are included in the second block. The third 

block contains a number of problems for independent solution. These tasks are 

accompanied only by short answers. It is worth noting that in the theoretical part, the 

descriptions of experiments and in the methods of solving problems, the SI system is 

mainly used, which is convenient from a practical point of view.  

The appendices placed at the end of the textbook are, on the one hand, an 

illustrative addition to the laws and phenomena that are described in the physics 

course, and on the other hand, have a reference character necessary for successful 

problem solving. 
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CHAPTER 1. MOLECULAR KINETIC THEORY 
 

1.1. Basic Concepts 

 

Molecular-kinetic theory is the doctrine that explains the structure and 

properties of bodies by the movement and interaction of atoms, molecules and ions of 

which the bodies are composed. The molecular-kinetic theory is based on three most 

important points (postulate), which are fully confirmed experimentally and 

theoretically: 

1) all bodies are made up of particles: molecules, atoms or ions. The 

composition of atoms includes smaller elementary particles; 

2) atoms, molecules and ions are in continuous chaotic motion; 

3) there are interaction forces between the particles of any body, namely: 

attractive forces and repulsive forces. 

These starting points are confirmed by the phenomena of diffusion, Brownian 

motion, structural features and properties of liquids and solids, as well as research in 

the field of particle physics.  

An atom is the smallest particle of a given chemical element. Each chemical 

element corresponds to well-defined atoms that preserve the chemical properties of 

this element. 

Each atom consists of a positively charged nucleus and negatively charged 

electrons moving in the electric field of the nucleus. The electric charge of the 

nucleus is equal to the absolute value of the total charge of all the electrons of the 

atom, so the atom is electrically neutral. 

A molecule is the smallest stable particle of a given substance with its basic 

chemical properties. A molecule consists of one or more atoms of the same or 

different chemical elements.  

An ion is an electrically charged particle of a substance that is formed from an 

atom or molecule when they lose or, conversely, attach one or more electrons. 

Atoms combine into a molecule due to chemical bonds based on various 

interactions of external (valence) electrons. The number of atoms in the molecules 

varies widely: from two (СO, O2, NO, H2), three (CO2, SO2), four (NH3) to hundreds 

of thousands (protein molecules). A molecule, like an atom, is electrically neutral. 

The molecule contains an equal amount of electrically charged particles of the 

opposite sign.  

The quantity of a substance is the physical quantity determined by the number 

of specific structural elements: molecules, atoms or ions of which the substance is 

composed. Since the masses of individual structural elements (for example, 

molecules) differ from each other, the same amounts of different substances have 

different masses. For example, 1025 hydrogen molecules and 1025 oxygen molecules 

are considered the same amounts of matter, although they have different masses equal 

to 3.34510–2 kg and 5.31410–1 kg, respectively. Mass is not a measure of the 

amount of a substance. The unit of measurement for the amount of substance is mole. 

The mole (symbol mol) is a unit of the International System of Units defined as 
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exactly NA = 6.022140761023 particles. The integer NA is called  

Avogadro number. This number was named in honour of Amedeo Carlo Avogadro 

(9.08.1776 – 9.07.1856)  

The volume of one mole is called the molar volume.  




 V ,                                         (1.1.1) 

where υ = 1/ρ is the specific volume; ρ is the density of the substance; μ is the mass 

of one mole.  

Under normal conditions (STP – standard temperature and pressure, 

temperature and pressure are equal t = 0°C, P = 101325 Pa, respectively), the molar 

volumes of all ideal gases (the concept of ideal gas is given in Section 1.2) are the 

same: Vμ = 2.241383×10–2 m3/mol. 

Molar mass is 

ANm1 ,                                           (1.1.2) 

where m1 is the mass of one structural element (atom, molecule or ion).  

The number of moles of substance with a mass of m is 




m
 .                                             (1.1.3) 

The dimensions of an atom are determined by those distances from the centre 

of the nucleus at which external valence electrons or external filled electron layers are 

located.  

 

1.2. Ideal Gas Model 

 

The density of a gas under normal conditions is a thousand times lower than its 

density in a liquid or solid state; therefore, the distance between gas molecules is tens 

of times greater than in other states.  

The molecules in the gas move uniformly and rectilinearly at a very high speed 

(about 500 m/s). The forces of intermolecular interaction between collisions of 

molecules are negligible. The average distance a molecule travels without a collision 

is much larger than its size. During the collision itself, the molecules interact 

according to laws that differ little from the laws of elastic impact. Collision changes 

only the magnitude and direction of the velocity of the molecules. 

In molecular physics, the ideal gas model is used, in which the interaction 

between the molecules is neglected. The collision of molecules can be described at 

zero potential energy (Wp = 0). The total energy of molecules can be characterized 

by the sum of their kinetic energies. In this case, the interaction of molecules is 

reduced to a collision between them. These collisions occur with a high frequency (of 
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the order of 1010 s–1). However, most of the time, gas molecules move like free 

particles.  

A real gas can be considered ideal if the average potential interaction energy of 

the molecules is much less than their average kinetic energy. This approximation can 

be used for rarefied gases. For example, helium under normal conditions with a good 

approximation can be considered an ideal gas. 

The state of a given mass of gas can be characterized by pressure P, volume V, 

and temperature T. These values are not always equal in all parts of the system. If the 

temperature at different points of the body is different, then the body cannot be 

characterized by a certain value of the parameter T. Such a state, not subject to 

external influences, is called a non equilibrium state.  

Consider the case of a system isolated from external influences. Over time, the 

temperature at different points of such a system equalizes. The state of the system 

becomes equilibrium.  

An example of a non equilibrium state can be a gas coming from a small hole 

into a closed volume. At the initial time, the distribution of gas over such a volume is 

uneven. The pressure in different parts of the system is not the same. Now we will 

stop gas access to the system. The gas pressure at different points in the volume of 

the system will equalize, and the state will become equilibrium.  

An equilibrium state is a state of the system in which all macroscopic 

parameters have a certain value, which remains unchanged under constant external 

conditions for an arbitrarily large time. 

The transition of a system from one state to another is called a process. If such 

a transition occurs through a sequence of non equilibrium states, then the transition is 

called a non equilibrium process. If the transition occurs through a sequence of 

equilibrium states, then the transition is called the equilibrium process. The 

equilibrium process should be slow enough (infinitely slow in the limit) so that the 

equilibrium state can be established at any time.  

The thermodynamic system can be characterized by external and internal 

parameters. The volume of gas is an external parameter, since it depends on the 

location of bodies external to the system (gas), namely the walls of the vessel in 

which the gas is located. Pressure and temperature are internal parameters, since they 

depend on the coordinates, velocities of the gas molecules and its density.  

When the gas is in equilibrium, there is a functional relationship between its 

parameters, which is called the equation of state. The equation of state is often 

expressed as a dependency 

  0,, TVPF ,                                            (1.2.1) 

where function F for ideal gases is determined theoretically using the relations of 

statistical physics.  

Rudolf Julius Emanuel Clausius (2.01.1822 – 08.24.1888) substantiated the 

equation of an ideal gas state. An example of a state equation is the Mendeleev – 

Clapeyron equation for ideal gases and the van der Waals equation for real gases. 
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1.3. Maxwell Distribution 

 

The result of each collision between molecules is a change in their velocities. 

After a large number of collisions, a stationary equilibrium state is established when 

the number of molecules in a given speed range is kept constant (accurate to 

fluctuations). The velocity distribution of molecules was first established by James 

Clerk Maxwell (13.06.1831 – 5.11.1879). 

The most important macroscopic parameter characterizing the velocity 

distribution of molecules is the average kinetic energy of the molecules. Consider a 

mixture of gases enclosed in an isolated volume. Molecules of different varieties of 

this mixture have the same average kinetic energies. This means that the interaction 

of molecules of various varieties is equalization of these energies. 

We prove this statement. Consider a mixture consisting of two types of 

molecules (indices 1 and 2, respectively). We calculate the relative velocities 

12 vv


  and velocities of their centres of mass 

21

2211

mm

vmvm
vcm









.                                         (1.3.1) 

A consequence of the random nature of molecular collisions is that the two 

types of velocities indicated above cannot be in correlation. Consequently, the 

average of their scalar product, taken over all pairs of molecules, is zero 

   0, 12  vvvcm


 

or 

  
   

0
,

,
21

2
11

2
222121

12 





mm

vmvmvvmm
vvvcm




         (1.3.2) 

Since the velocities of molecules of the first and second grades are not in 

correlation, there should be   0, 21 vv


. It follows that  

22

2
22

2
11 vmvm

 .                                         (1.3.3) 

Consequently, a system of molecules capable of exchanging energy tends to a 

state in which the average kinetic energies of molecules of various sorts and the 

average kinetic energies of molecules in different spatial parts of the system have the 

same value.  

This state of the system is called thermodynamic equilibrium, and the average 

kinetic energy is characterized by a physical quantity called temperature. Instead of 

talking about the constancy of the average kinetic energy of molecules, it can be 

argued that the temperature is constant throughout the volume of the system.  
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The temperature T is connected, by definition, with the average kinetic energy 

of the molecules by the formula 

kT
mv

2

3

2

2

 .                                         (1.3.4) 

where k = 1.38066210–23 J/K is a proportionality coefficient (Boltzmann constant). 

Boltzmann constant named after its discoverer Ludwig Eduard Boltzmann 

(20.02.1844 – 5.09.1906). 

The value T is the thermodynamic temperature. The kelvin (symbol: K) is the 

base unit of temperature in the International System of Units (SI). This base unit of 

temperature is named after William Thomson, Kelvin (26.06.1824 – 17.12.1907). 

Until 19 May 2019, the temperature of the triple point of water was defined as 

exactly 273.16 K or 0.01 C (degree Celsius). This means that a temperature 

difference of one degree Celsius and that of one Kelvin are exactly the same.  

Thermodynamic equilibrium is established as a result of a huge number of 

collisions between molecules. As a result of each collision, the projections of the 

velocity of the molecule change to a random values Δvx, Δvy, Δvz. Variations of 

each velocity projection are independent of each other. Consider the motion of a 

molecule whose velocity at the initial moment of time is zero. The change in the 

projections of its velocity after a collision with index i is denoted by Δvx,i, Δvy,i, 

Δvz,i. After a sufficiently large projection time, the velocities of the molecules are 

 
i

izz
i

iyy
i

ixx vvvvvv ,,, ,, .                 (1.3.5) 

Each of the velocity projections is the sum of a large number of random 

variables satisfying the condition for the implementation of the Gaussian distribution. 

Consequently, the velocity projections are distributed according to the law 

   22 exp xx vAv   , 

   22 exp yy vAv   , 

   22 exp zz vAv   ,                                      (1.3.6) 

where constants A and α are the same for all three projections due to the complete 

equivalence of the coordinate axes and the independence of random variables  

vx, vy, vz.  

The probability that the projection of the velocity on the x axis is in the interval 

[vx, vx + Δvx] is equal to 

      xxxxx dvvAdvvvdp 22 exp   .                  (1.3.7) 
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Similar formulas are valid for other velocity projections. The probability that 

the molecule’s speed is in the speed range [vx, vx + Δvx; vy, vy + Δvy; vz, vz + Δvz] 

is expressed as 

     zyxzyxzyx dvdvdvvvvAvvvdp 2223 exp,,                (1.3.8) 

by the probability multiplication formula. 

The constant value A is found from the normalization condition 

 


1,, zyx vvvdp .                                     (1.3.9) 

We use the following expression for further analysis  

 








 xx dvv2exp .                                    (1.3.10) 

In this case, from (1.3.9) and (1.3.10) we get 




A .                                                   (1.3.11) 

We calculate the average value of the kinetic energy of the molecule 

   
















 


zyxzyxzyx vvvdpvvv

m
vvv

mmv
,,

222

222222
2

 

     zyxzyxzyx dvdvdvvvvvvv
m 222222

2/3

exp
2

















 







.  (1.3.12) 

The calculation of the integrals (1.3.12) leads to the expression 

4

3

2

2 mmv
 .                                        (1.3.13) 

Equating the right-hand sides of (1.3.4) and (1.3.13), we obtain 

kT

m

2
 .                                          (1.3.14) 

In this case, using formula (1.3.8), we can write 

 
 

zyx
zyx

zyx dvdvdv
kT

vvvm

kT

m
vvvdp













 











2
exp

2
,,

2222/3


     (1.3.15) 

The velocity distribution is isotropic. Therefore, from the distribution of 

velocity projections, we can proceed to the distribution of velocity modules. We 
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consider the spherical coordinate system in the space of velocities in formula (1.3.15) 

and integrate (1.3.15) over the spherical layer dv thick, whose radius is 

222
zyx vvvv  . As a result, we can write the formula 

dvdvdvdvdv zyx  2
,                                  (1.3.16) 

where dΩ is the solid angle at which the surface element of the spherical layer is 

visible from the origin.  

The integral over the entire surface of the spherical layer is  








4

22

4

2 4 vdvdv .                            (1.3.17) 

Therefore, the integration of formula (1.3.15) over a spherical layer of 

thickness dv leads to the formula 

  dvv
kT

mv

kT

m
vdp 2

22/3

2
exp

2
4 

























 .              (1.3.18) 

Formula (1.3.18) describes the probability that a molecule will have a velocity 

whose modulus is in the range of [v, v + Δv]. 

Function  

  2
22/3

2
exp

2
4 v

kT

mv

kT

m
vf 

























                      (1.3.19) 

is called the Maxwell distribution. The Maxwell distribution is the probability 

density that the molecule has a velocity modulus v. Maxwell in 1860 derived the 

statistical law of the distribution of velocities of gas molecules. 

Formulas (1.3.18) and (1.3.19) allow you to find the relative number of 

molecules whose velocities are in a given interval [v, v + Δv] 

 
   dvvfvdp

n

vdn
 .                              (1.3.20) 

An increase in the velocity of molecules leads to the fact that the maximum of 

the Maxwell distribution shifts toward higher velocities. The height of the curve 

corresponding to the Maxwell distribution for the maximum position decreases 

slightly.  

The average value of a function φ(v) depending on the velocity modulus is 

calculated by formula 
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   



0

dvvfv .                                        (1.3.21) 

We determine by the formula (6.3.22) the average speed v  and the root- 

mean-square speed 
2v   

m

kT
v

m

kT
v

3
,

8 2 


.                           (1.3.22) 

The speed vp that corresponds to the maximum of the Maxwell distribution 

curve is called most probable speed. This speed is found from the condition of 

extremum df(v)/dv = 0 and is equal to 

m

kT
vp

2
 .                                             (1.3.23) 

A comparison of formulas (1.3.22) and (1.3.23) leads to the following relation 

between the characteristic velocities for the Maxwell distribution 

pvvv
2

3

8

32 


.                                 (1.3.24) 

The characteristic velocities of oxygen and nitrogen molecules in air at room 

temperature are approximately (400 – 500) m/s. The speeds of hydrogen molecules 

are four times higher. The temperature dependence of the characteristic molecular 

velocities has the form Tv ~ .  

We direct the x axis perpendicular to the wall of the vessel in which the gas is 

located. Denote the concentration of molecules by n0. The density of the flow of 

molecules in the direction of the wall is 

  zyxxzyx dvdvdvvvvvfnn )()()(
0 ,,  ,             (1.3.25) 

where 
)(

xv  is a component of speed in the direction of positive x axis values. The 

frequency of molecular impacts on the walls of the vessel per unit area is 
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0 .                                           (1.3.26) 

Taking into account formula (1.3.22), we obtain 
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4

0 vn
 .                                             (1.3.27) 

The number N(v1,v2) of molecules whose velocities are in the range [v1,v2] is 

      
p
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duuundvvfnvvN
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22
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1
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4

,


.          (1.3.28) 

There are integral tables 

   
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
x

duuux 22exp
4


 .                             (1.3.29) 

Using these tables, the value N(v1,v2) in the formula (1.3.28) can be calculated 

as follows 
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021,  .                          (1.3.30) 

The following ratios 

      000 0460.0,2,7053.05.1,5.0,5724.0, nvNnvvNnvN pppp  ,  (1.3.31) 

can be cited as examples of such calculations. 

Thus, the largest part of all molecules has velocities in a relatively small 

interval near the most probable velocity.  

The Maxwell distribution is an equilibrium and, therefore, also a stationary 

state that does not change over time. The principle of detailed equilibrium states that 

equilibrium is established in detail, i.e. between all pairs of volume elements. This 

means that each volume element per unit of time gives as many particles to any other 

volume element as it receives from it. The validity of the principle of detailed 

equilibrium is due there that the state of equilibrium is established as a result of the 

chaotic nature of collisions and the randomness of the movement of molecules. The 

principle of detailed equilibrium is valid not only for collisions, but also for other 

parameters in any systems whose equilibrium state is established as a result of chaotic 

processes. 

The movement of a molecule in a gas is accompanied by collisions, as a result 

of which the molecule changes its direction of motion. All possible results of 

collisions in a specific situation can be predicted only probabilistically. The 

probability of a collision with a specific result is described using a cross section.  

Suppose that the particle falls on the area S of the volume in which the target 

particles with a concentration of n0 are located. In the layer of thickness dx there are 

target particles, the number of which is n0Sdx. The sum of their cross sections, 

which, as it were, covers part of the area S, is equal to dS = σn0Sdx. It follows that 



 18 

the probability that the initial particle collides with one of the target particles in a 

layer of thickness dx is 

dxn
S

dS
dP 0 .                                     (1.3.32) 

Formula (1.3.32) is the definition of the cross section σ of the process. 

Probability dP can usually be calculated based on the specific laws of the process or 

measured experimentally. 

Values σ and n0 are independent of x. Therefore, the probability of the event 

increases in proportion to the path travelled by the particle. The length of the path l  

at which this probability is equal to unity is called the mean free path. Using formula 

(6.3.33) in this case leads to equality 10 ln , which implies that 

0

1

n
l


 .                                              (1.3.33) 

Suppose a particle beam moves in direction x. Particles of the beam, colliding 

with other particles, change the direction of their motion and drop out of the beam. 

Therefore, the particle flux I(x) in the beam decreases as the substance passes, i.e. 

with an increase of x. The decrease in flux dI during the passage of the layer dx is 

proportional to the number of collisions of the beam particles with the target 

particles. The attenuation of the beam density is IdP. Therefore, we obtain the 

following equation for the particle flux density in the beam 

  dxnxIdI 0 .                                   (1.3.34) 

The minus sign in equation (1.3.34) takes into account that the particle flux 

density decreases with increasing x, i.e. as the beam advances in the substance. The 

solution of equation (1.3.34) has the form 
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l

x
IxnIxI exp0exp0 0 .            (1.3.35) 

Measuring the flux density of incident particles at two distances: x = 0 and 

some other value of x, allows us to calculate the collision cross section 

 
 xI

I

xn

0
ln

1

0

 .                                           (1.3.36) 

A particle passing through a substance moves with an average speed of v  

and, therefore, passes the mean free path over a period of vl / . Therefore, the 
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average collision frequency, i.e. the average number of collisions in a time equal to 

one second is 

vn
l

v
0

1



  .                                  (1.3.37) 

Collisions of identical molecules in gases are most often represented as 

collisions of hard balls of the same radius r0. In this case, the cross section and 

related quantities are easy to calculate.  

The velocities of the colliding molecules and the mean free path taking into 

account the Maxwell distribution for the model of collisions of hard balls are  
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RT
nrvnr 0

2
00

2
0 1624  .                     (1.3.38) 

0
2
024

1

nr
l


 ,                                         (1.3.39) 

where R = kNA = 8.31446261815324 J/(mol·K) is gas constant. 

Normal conditions in air are characterized by the following values: 

n0  1025 m–3, r0 ~ 10–10 m, v  ~ 500 m/s. Therefore, the mean free path and 

collision frequency are approximately equal to: l   10–6 m,   109 s–1.  

An analysis of formula (1.3.39) shows that, at a fixed temperature, relation 

l  ~ 1/p holds, since pressure can be represented by formula 

kTnp 0 .                                            (1.3.40) 

This makes it very easy to estimate the mean free path for various pressures.  

 

1.4. Equation of State 

 

Pressure arises as a result of the impact of molecules on the walls of the vessel. 

Each molecule during a collision transmits a certain momentum to the vessel wall. 

Let us direct the x axis perpendicular to the vessel wall. In this case, the momentum 

transferred to the wall is 
)(

12 
xvm , where m1 is the mass of the molecule. The 

pressure is equal to the total momentum transferred to a wall of 1 m2 by molecules as 

a result of collisions in a time equal to 1 s.  

The momentum flow towards the wall is 

  )(
1

)()()(
0 ,,  xzyxxzyx vmdvdvdvvvvvfnn .              (1.4.1) 
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The “+” index at speeds shows that this flow is created only by those 

molecules that move toward the wall (i.e., half the total number of molecules). Then 

      kTndvdvdvvvvvfmnP zyxxzyxx 0
)(2)()(

10 ,,2 .      (1.4.2) 

A similar result can be obtained for the remaining pressure projections 

kTnPPP zyx 0 .                                   (1.4.3) 

Equation (1.4.3) shows that the pressure is isotropic and can be denoted by 

symbol P without indicating the direction to which it refers. If the mechanical 

properties of the medium are anisotropic, then the pressure at a given point in 

different directions can be different. Further analysis will be carried out under the 

assumption that the properties of an ideal gas are isotropic. We rewrite equation 

(1.4.3) using the dependence of temperature on the mean square velocity 
2v  

according to the formula (1.3.23) 

0

2
1

23

2
n

vm
P  .                                     (1.4.4) 

Formula (1.4.4) is a mathematical expression of the basic equation of the 

kinetic theory of gases. When deriving equation (1.4.4), no assumptions were made 

about the law of the impact of molecules on the vessel wall. This process is very 

complex and depends on the properties of gas molecules, as well as on the properties 

of the wall material and its processing.  

Denote the total number of molecules in the gas volume V by the symbol n. 

We rewrite equation (1.4.3), taking into account that n0 = n / V 

nkTPV  .                                              (1.4.5) 

Since the value n is not directly measured for a given mass of gas, it is 

necessary to give equation (1.4.5) a more convenient form. For this, we use the 

concept of mol.  

The total number of molecules in the volume containing ν moles of molecules 

is n = νNA , therefore, equation (1.4.5) can be rewritten in the form 

RTPV  ,                                               (1.4.6) 

Values related to one mole of a substance are called molar quantities. Equality 

(1.4.6) is called the Mendeleev – Clapeyron equation. Studies related to this equation 

were performed by Dmitri Ivanovich Mendeleev (8.02.1834 – 2.02.1907) and Benoît 

Paul Émile Clapeyron (26.01.1799 – 28.01.1864). 
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Molar volume refers to the volume of a substance assigned to one mole 




V
V  .                                                (1.4.7) 

Then we can write  

RTPV  .                                                 (1.4.8) 

In many cases, it is more advisable to write the Mendeleev – Clapeyron 

equation using the value of the gas mass in explicit form. We rewrite equation (1.4.6) 

using relation μ = m / ν, where μ is the molar mass; m is the mass of gas. Then 

equation (1.4.6) takes the form 

RT
m

PV


 .                                               (1.4.9) 

The individual components of the gas mixture can be considered independent. 

Therefore, each component creates a pressure corresponding to equation (1.4.3). The 

total pressure is equal to the sum of the component pressures 

ii PPPkTnkTnkTnP  ...... 2100201 .          (1.4.10) 

where quantities Pi are called partial pressures.   

The law expressed by equation (1.4.10) is called the Dalton’s law. John 

Dalton (6.09.1766 – 27.07.1844) explained the law of partial pressures using the 

molecular theory. The molecules of each component of the mixture exert a pressure 

independent of the pressure exerted by the molecules of the other components. This is 

due to the fact that molecules do not interact in an ideal gas. Deviations from the 

Dalton law are observed at sufficiently high concentrations (pressures ~ 106 Pa) of 

gases. In this case, the interaction between the components of the mixture can no 

longer be neglected.  

Each component of a gas mixture occupies a volume called a partial volume 

Vi. The volume of a mixture of ideal gases is equal to the sum of their partial 

volumes.  

We denote the partial pressures, masses, and molar masses of the components 

of the gas mixture by symbols Pi, mi, μi, respectively. Then, using equations (1.4.9) 

and (1.4.10), we can write 

  RT
mmm
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
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
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2

2

1

1
21 .             (1.4.11) 

We introduce the following notation for the pressure of a mixture of gases, the 

mass of the mixture and the average molar mass 



 22 

iPPPP  ...21 , 

immmm  ...21 , 
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






i
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11

2

2

1

1  .                       (1.4.12) 

Therefore, equation (1.4.11) can be written in a form similar to equation (1.4.9) 

RT
m

PV


 .                                         (1.4.13) 

An analysis of equation (1.4.5) shows that at the same pressures and 

temperatures in equal volumes of any gas contains the same number of molecules. 

This statement is called Avogadro's law.  

Therefore, a mole of any gas at fixed temperatures and pressures occupies the 

same volume. Under normal conditions, this volume is V = 2.24138310–2 m3/mol. 

The concentration of molecules under these conditions is determined by the 

Loschmidt constant NL = 2.6867541025 m–3. This constant is named after Johann 

Josef Loschmidt (15.03.1821 – 8.07.1895). 

Temperature is a quantitative measure of the body’s “heat”. The concept of 

"heating" is subjective and requires clarification. The body chosen to measure “heat” 

is called the thermometric body. The quantity by which "heating" is measured is 

called the thermometric quantity.  

Denote the thermometric value by symbol l. For example, one can imagine a 

thermometric body in the form of a metal rod, and the thermometric quantity is the 

length l of the rod. The most easily defined and known are the values of “heating”, at 

which water boils at atmospheric pressure, and “heating”, at which water freezes. 

These reference points are called the boiling point of water and the freezing point. 

The thermometric values at the boiling point of water and at the freezing point are l1 

and l2, respectively. Temperature is the numerical value of a quantity by which the 

“heating” of a body is characterized.  

Temperature t is expressed in degrees. The reference points can be associated 

with some arbitrary temperature. Let the freezing point correspond to a temperature 

of t1, and the boiling point of water corresponds to a temperature of t2.  Then the 

value 

12

121
tt

ll




                                               (1.4.14) 

is called the degree of temperature. 
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The temperature of a thermometric body is a number, which is determined by 

the formula 

 12
12

1
1

1
1

1
tt

ll

ll
t

ll
tt tt 









 ,                       (1.4.15) 

where lt is a thermometric value that corresponds to a fixed value of “heat”.  

Formulas (1.4.14) and (1.4.15) characterize the empirical temperature scale. 

These formulas have a unique meaning only with a fixed choice of thermometric 

body and thermometric value. As an example of empirical temperature scales, 

celsius, reaumur, and fahrenheit shafts can be mentioned. Daniel Gabriel Fahrenheit 

(05.24.1686 – 09.16.1736), René Antoine Ferchault de Réaumur (28.02.1683 – 

17.10.1757), and Anders Celsius (27.11.1701 – 25.04.1744) proposed a temperature 

scales named after them. These scales differ in temperature values corresponding to 

reference points: t2 = 100, t1 = 0 (Celsius scale, t°C); t2 = 80, t1 = 0  

(Reaumur scale, t R); t2 = 212, t1 = 32 (Fahrenheit scale, t F). Therefore, the same 

“heating” is characterized in these scales by different temperatures t°C, t R, t F 
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 .                                   (1.4.16) 

Formulas (1.4.16) allow a simple recalculation of temperature from one scale 

to another 

CFCR 8.132,8.0   tttt .                       (1.4.17) 

The boiling and freezing temperatures of water depend on pressure, and this 

pressure must be additionally recorded in determining the temperature. In addition, 

the boiling and freezing temperatures of water are recorded with insufficient 

accuracy. Therefore, in the International System of Units of SI, it was agreed to 

determine the temperature scale by one reference point, for which the triple point of 

water was taken. The temperature of the triple point of water is taken, by definition, 

equal to 273.16 K. The unit of temperature is defined as 1/273.16 part of the 

temperature interval between the triple point and the point of absolute zero 

temperature. The absolute zero point of temperatures is not a reference point, but a 

temperature 273.16 K below the temperature of the triple point of water.  
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Choosing the ideal gas as a thermometric body, one can determine the 

temperature by the formula 

P
P

T
0

16.273
 ,                                         (1.4.18) 

 

where P0 is the gas pressure at the temperature of the triple point of water; P is the 

gas pressure at the measured temperature. The gas volume during measurement 

should be constant. The temperature scale defined in this way is called the absolute 

thermodynamic temperature scale.  

The Celsius scale is determined by the condition that the freezing temperature 

of water at a pressure of 1.013105 Pa is 0 С. One degree Celsius is equal to one 

Kelvin. The freezing temperature of water in the thermodynamic scale under these 

conditions is 273.15 K. Therefore, by definition, the temperature on the Celsius scale 

t°C is set by equality 

15.273Tt ,                                       (1.4.19) 

where T is the value of temperature, expressed in absolute thermodynamic 

temperature scale. 

 

1.5. Boltzmann Distribution 

 

The total energy of a gas molecule located in an external potential field is 

pWmvW  2/2
, where Wp is the potential energy of the molecule. In a state of 

thermodynamic equilibrium, the temperature at different points in the system in an 

external potential field has the same value. The external potential field has a 

significant effect on the distribution of the concentration of molecules.  

Suppose that the system is in a condition of thermodynamic equilibrium. In this 

case, the potential force acting on a certain volume of gas is balanced by the forces of 

pressure on the surface of this volume. A force of F = – grad(Wp) acts on each 

molecule. Let us consider the balance of forces along the x axis. The force   

x

W
dxdydzndF

p
x




 01                                     (1.5.1) 

acts on the molecules in the volume of an infinitesimal cube with edges dx, dy, dz, 

where n0 is the concentration of molecules.  

The pressure difference between the bases of the cube along the x axis is 

 dxxP  / . Due to the pressure difference manifests force acting on the cube in the 

direction of the x axis 
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2 .                                       (1.5.2) 
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Under equilibrium, these forces must compensate each other, i.e. 

021  xx dFdF , or 
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Similar equalities hold for the other two coordinate axes. Adding the left and 

right sides of equalities (1.5.3) for all coordinate axes, we get 
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where dP, dWp are complete differentials of pressure and potential energy changes. 

 From equation (1.3.41), taking into account the fact that T = const, we get 

0kTdndP  ,                                               (1.5.5) 

and therefore 
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0 .                                           (1.5.6) 

We integrate this equation between points (x0, y0, z0) and (x, y, z) along an 

arbitrary path. Then we can write the following relation 
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Equation (1.5.7) is called the Boltzmann distribution.  

We normalize to zero potential energy at a point (x0, y0, z0), those we assume 

that the relation Wp(x0, y0, z0) = 0 is true. In this case, the Boltzmann distribution 

can be written in a simpler form 
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where n0 = n0(x, y, z); n00 = n0(x0, y0, z0); Wp = Wp(x, y, z).  

Let us now consider the case when the concentration of molecules is unknown 

at any point, and the total number n of molecules in the system is known. Then the 

Boltzmann distribution must be represented as 
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The normalization constant A must be found from the normalization condition 

  
V

ndxdydzzyxn ,,0 ,                              (1.5.10) 

where V is the volume of the system.  

Combining formulas (1.5.9) and (1.5.10), we obtain the equation for 

determining the constant value A 

 
dxdydz

kT

zyxW

A

n

V

p
 










,,
exp .                 (1.5.11) 

The ideal gas pressure can be unambiguously expressed in terms of 

temperature. Therefore, the Boltzmann distribution allows you to immediately write 

the pressure distribution in equilibrium (T = const). For a practically important case 

of pressure P distribution in an isothermal atmosphere with a change in height h, the 

following barometric formula can be written 
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,                              (1.5.12) 

where 0000 ,   hhPP  , is the pressure and density of the atmosphere at a 

height of h = 0. 

Under conditions of statistical equilibrium, the same average energy falls on 

each degree of freedom of the system. This statement is called the energy equilibrium 

distribution among degrees of freedom. A consequence of applying this theorem to an 

ideal gas leads to the relations 

2222

222 kTmvmvmv zyx  .                       (1.5.13) 

Rather small particles suspended in a liquid, when observed under a 

microscope, appear to be in continuous jitter. This type of movement is called 

Brownian motion. This motion is named after Robert Brown (21.12.1773 – 

10.06.1858). Energy 3kT/2, attributable to the three translational degrees of freedom 

of the particle, leads to the movement of its centre of mass, which is observed under 

the microscope in the form of trembling. If the Brownian particle is sufficiently rigid, 

then an additional energy equal to 3kT/2 falls on its rotational degrees of freedom. 
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Therefore, with its trembling, the particle also experiences constant changes in 

orientation in space.  

Due to random collisions, Brownian motion occurs in chaotic jumps. The 

average square of particle removal from the beginning after n jumps is 

tt
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nrr tn 
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 
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2

222
,                              (1.5.14) 

where Δt is the time between jumps; t = nΔt. 
 Deviations of a Brownian particle in any direction are equally probable. From 

this assumption, we can obtain the following relation for α 

b

kT6
 ,                                                    (1.5.15) 

where b is a quantity characterizing the force of liquid friction acting on a Brownian 

particle.  

Therefore, formulas (1.5.14) and (1.5.15) solve the problem of the Brownian 

motion of particles suspended in a liquid 

b

kTt
r

62  .                                              (1.5.16) 

Suppose that particles in a thermodynamic system are distinguishable from 

each other. The behaviour of such particles obeys the Maxwell – Boltzmann 

distribution 

  zyx
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




 2exp,,,,,

2

.     (1.5.17) 

The assumption of the distinguishability of particles (molecules, atoms of an 

ideal gas) is erroneous. However, in the most frequent situations of classical physics, 

the Fermi – Dirac distribution (distribution is named after Enrico Fermi 

(29.09.1901 – 28.11.1954) and Paul Adrien Maurice Dirac (8.08.1902 – 20.10.1984)) 

and Bose – Einstein distribution (distribution is named after Satyendra Nath Bose  

(1.01.1894 – 4.02.1974) and Einstein) for indistinguishable particles practically 

coincide with the Maxwell – Boltzmann distribution for distinguishable particles. 

Due to this, the Maxwell-Boltzmann distribution is the main distribution of classical 

statistical physics.  
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1.6. Gas Laws 

 

We introduce the symbol n = N /V = NA / Vμ, which denotes the number 

of molecules per unit volume. Then, for the concentration and density of an ideal gas, 

we can write 

RT

P

RT

PN
n A 

  ,  .                                      (1.6.1) 

An ideal gas can be described by gas laws: the Boyle’s law (law was named 

after Robert Boyle (25.01.1627 – 31.12.1691) and Edme Mariotte (1620 – 

12.05.1684)), the Gay-Lussac’s law (the law was made public by Joseph Louis Gay-

Lussac (6.12.1778  – 9.05.1850)), and the Charles’s law (law was named after 

Jacques Alexandre César Charles (12.11.1746 –7.04.1823)). According to the 

Boyle’s law, at constant gas mass and constant temperature, the product of pressure 

and volume is a constant 

constconstifconst,  mTPV .                 (1.6.2) 

Equation (1.6.2) is called the isotherm equation.  

Dependence P = P(V ) for the isotherm has the form of a hyperbola, the 

position of which depends on the temperature of the gas. The process in which 

T = const is called an isothermal process. Internal energy U is equal to the sum of 

the energies of motion of all molecules and the energy of interaction of molecules 

with individual parts of the thermodynamic system. The internal energy U of the 

ideal gas depends on its temperature remains constant at T = const. All heat is 

converted to work by isothermal expansion of the gas. The work performed by the 

gas during isothermal expansion is equal to the amount of heat Q that must be 

supplied to the gas to perform this work 

PdVdQA  ,                                         (1.6.3) 

where δA is elementary work; dV is an elementary volume.  

Consider the initial and final states of an ideal gas with the corresponding 

values of volume (V1, V2) and pressure (P1, P2). In this case, for the isothermal 

process, we can write 

2211 VPVP  .                                             (1.6.4) 

Full work in the isothermal process is 

 
2

1 1

2
12 ln

V

V V

V
RT

m
PdVA


.                               (1.6.5) 

Gas compression and, accordingly, a negative value of work are observed at 

V1 > V2 or P1 < P2.  
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The property of a gas to change its volume when pressure changes is called 

compressibility. The value 

TdP

dV

V










1
 .                                              (1.6.6) 

is called the isotremic compressibility coefficient 

The formulation of the Gay-Lussac’s law has the form: at a constant gas 

pressure and constant mass, the ratio of the gas volume to its temperature is a 

constant 

constconst,ifconst,  mP
T

V
.                    (1.6.7) 

Equation (1.6.7) is called the isobar equation. The dependence V = V(T ) for 

the isotherm has the form of a half-line parallel to the axis V. The process in which 

P = const is called the isobaric process. Assume that V1, T1 and V2, T2 are the 

volume and temperature of the gas in the initial and final states, respectively. Then 

2

2

1

1

T

V

T

V
 .                                                (1.6.8) 

Gas work performed during the expansion, is 

TR
m

VPA 


12 ,                                   (1.6.9) 

where ΔV = V2 – V1 is volume change; ΔT = T2 – T1 is a change in temperature.  

Gay-Lussac’s law can be represented as 

 tVV V 10 ,                                      (1.6.10) 

where V is the volume of an ideal gas at a temperature of t, counted from 0 С;  

V0 is the volume of an ideal gas at temperature T0 = 273.16 K.  

The value 

TV

V
V

0

                                             (1.6.11) 

is called the coefficient of volume expansion. In the general case of any substance, 

the coefficient of volume expansion at constant pressure is the quantity 

PdT

dV

V










1
 ,                                       (1.6.12) 

where V is the initial volume. 
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The formulation of the Charles’s law has the form: for a constant volume and 

constant mass of gas, the ratio of gas pressure to its temperature is a constant 

constconst,ifconst,  mV
T

P
.                   (1.6.13) 

Equation (1.6.13) is called the isochore equation. Dependence P = P(T ) for 

isochore has the form of a half-line parallel to axis P. Dependence P = P(T ) for the 

isochore has the form of a half-line extending from the origin of the coordinate 

system. The process in which V = const is called the isochoric process. Gas does 

not perform work in an isochoric process. The thermal energy supplied to the gas is 

expended to increase its internal energy U.  

Assume that P1, T1 and P2, T2 are the pressure and temperature of the gas in 

the initial and final states, respectively. Then 

2

2

1

1

T

P

T

P
 .                                              (1.6.14) 

The change in internal energy during the isochoric process is 

Tc
m

U V


,                                       (1.6.15) 

where cV is molar heat capacity at constant volume; ΔT = T2 – T1.  

Charles's law can be represented as 

 tPP P 10 ,                                       (1.6.16) 

where P is the pressure of an ideal gas at a temperature of t, counted from 0 С;  

P0 is the pressure of an ideal gas at a temperature of  T0 = 273.16 K.  

The value  

TP

P
P

0

                                            (1.6.17) 

is called the thermal coefficient of pressure. 

It should be noted that αP = αV .  
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Test questions 
 

1. Formulate the tasks that are studied by molecular kinetic theory. 

2. List the postulates of molecular kinetic theory. 

3. Give a determination of the amount of the substance. 

4. Is the set of conditions: t = 0 °C and P = 103 Pa normal conditions? 

5. What restrictions should be imposed on real gas so that it can be considered as 

an ideal gas? 

6. Define the concept of a non equilibrium state of a thermodynamic system. 

7. Explain why the gas volume can be considered as an external parameter, and 

the pressure and temperature of this gas can be considered as an internal 

parameter. 

8. Give the definition of the gas equation of state. 

9. Indicate the macroscopic parameter that characterizes the velocity distribution 

of the molecules. 

10. Prove that the interaction of molecules of a mixture of two gases leads to a 

state in which the average kinetic energies of these gases are the same. 

11. Give a definition of the temperature of the thermodynamic system. 

12. Write down the Maxwell distribution. 

13. Write down the formulas by which you can determine the characteristic speeds 

of the molecules: the average speed, the most probable speed and the root-

mean-square speed. 

14. Formulate the principle of detailed equilibrium. 

15. What gas parameters affect the mean free path of a molecule? 

16. Write down the basic equation of the kinetic theory of gases. 

17. Is the statement true that the Mendeleev – Clapeyron equation is the equation 

of state of a real gas? 

18. Write down the Boltzmann distribution. 

19. Formulate the Boyle’s law. 

20. Describe the formula by which the isothermal compressibility coefficient is 

determined. 
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Problem-solving examples 
 

Problem 1.1  

 

Problem description. An ideal gas contains a number of molecules equal to the 

Avogadro number. Determine the number ΔN of molecules whose speeds v are less 

than 0.001 of the most probable speed.  

 

Known quantities: N = NA. 

 

Quantities to be calculated: ΔN. 

 

Problem solution. Consider the distribution of molecules in relative velocities u 
















pv

v
u . The number dN(u) of molecules whose relative velocities are in the 

range from u to u + du is determined by the formula 

    duuu
N

udN 22exp
4




,                             (P.1.1.1) 

where N is the total number of molecules in volume. 

According to the condition of the problem, the maximum molecular velocity is  

pm vv 001.0 .                                          (P.1.1.2) 

Hence,  

001.0
p

m
m

v

v
u .                                      (P.1.1.3) 

For such values of u, expression (P.1.1.1) can be significantly simplified. 

Considering the case of small values of u, we obtain 

  1,1exp 22  uuu .                        (P.1.1.4)  

In addition, for small values of u, we can neglect the value 
6222 10)001.0(  muu  compared to unity. Then formula (P.1.1.1) can be 

written as 

  duu
N

udN A 24


 .                                   (P.1.1.5) 

We integrate formula (P.1.1.5) by u in the range from 0 to um  
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  .            (P.1.1.6) 

We substitute the numerical values in the formula (6.1.6) 

  143
23

1053.4001.0
3

1002.64








N . 

Answer. The number of molecules is ΔN = 4.53×1014. 

 

Problem 1.2  

 

Problem description. The volume of the air bubble as it floated from the bottom of 

the lake to the surface increased three times. Determine the depth of the lake. 

 

Known quantities: V2 = 3V1. 

 

Quantities to be calculated: h. 

 

Problem solution. Suppose that the temperature of the lake at any depth is constant. 

Then, according to the Boyle – Marriott law, we can write the following relation 

2211 VPVP  ,                                                   (P.1.2.1) 

where P1, P2 are air pressures in the bubble at the bottom and on the surface of the 

lake, respectively; V1, V2 are the volumes of the air bubble at the bottom and on the 

surface of the lake, respectively. 

The air pressure P2 in the bubble on the surface of the lake is equal to 

atmospheric pressure P0, i.e. 

01 PP  .                                                  (P.1.2.2) 

We rewrite formula (P.1.2.1) taking into account the conditions of the problem 

(V2 = 3V1) 

1011 3 VPVP  .                                                (P.1.2.3) 

A consequence of formula (1.2.3) is the relation 

01 3PP  .                                                  (P.1.2.4) 

Consequently, the increase in pressure at the bottom of the lake is 

001 2PPPP  .                                     (P.1.2.5) 
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The change in pressure, on the other hand, is equal to 

ghP  ,                                                   (P.1.2.6) 

where ρ is the density of water; h is the depth of the lake; g is the acceleration of 

gravity. 

We equate the right-hand sides of formulas (P.1.2.5) and (P.1.2.6) 

ghP 02 ,                                               (P.1.2.7) 

then 

g

P
h


02

 .                                                (P.1.2.8) 

Substitute the numerical values in the formula (P.1.2.8) 

m6.20
8.910

1001.12
3

5





h . 

Answer. The depth of the lake is  h ≈ 20.6 m. 

Problem 1.3 

 

Problem description. The vessel has a volume of V = 10 l and is filled with dry air 

under normal conditions. Water of mass m = 3 g is added to the vessel and heated to 

a temperature of T = 373 K. Determine the pressure of moist air at this temperature. 

 

Known quantities: V = 10 l, m = 3 g, T = 373 K. 

 

Quantities to be calculated: P. 

 

Problem solution. According to Dalton’s law, the pressure in the vessel is 

21 PPP  ,                                                 (P.1.3.1) 

where P1 is dry air pressure; P2 is moist air pressure. 

Air heating occurs at a constant volume. Therefore, the dry air pressure at 

temperature T = 373 K is determined by Charles law 

T

P

T

P 1

0

0  ,                                                   (P.1.3.2) 

then 

0

0
1

T

TP
P  ,                                                  (P.1.3.3) 
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where P0, P1 are air pressures at temperatures T0 = 273 K and T = 373 K, 

respectively. 

We find the pressure of water vapour, considering it an ideal gas. The number 

n of moles of water vapour molecules in the vessel is 



m
n  ,                                                   (P.1.3.4) 

where m is a mass of water; μ is the molar mass of water vapour. 

In this case, the volume occupied by the vapour is 



mV
nVV 0

00  .                                       (P.1.3.5) 

We write the combined law of the gas state 
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T
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00 


.                                            (P.1.3.6) 

We determine from formula (P.1.3.6) the vapour pressure 

VT

VTP
P

0

00
2


 .                                              (P.1.3.7) 

We rewrite formula (P.1.3.7) taking into account formula (P.1.3.5) 

VT

TmVP
P

0

00
2  .                                             (P.1.3.8) 

Therefore, the moist air pressure is 


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We substitute the numerical values in the formula (P.1.3.9) 

Pa109.1
101810

104.22103
1

273

3731001.1 5
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Answer. Moist air pressure is P ≈ 1.9×105 Pa. 
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Problems 
 

Problem A  

 

Problem description. Calculate the probability ω that a given ideal gas molecule has 

a velocity other than 2vp (vp is the most probable speed) no more than 1%. 

 

Answer. ω = 6.63×10-3 . 

 

Problem B  

 

Problem description. Determine the mean free path  of oxygen molecules at a 

temperature T = 250 K and a pressure P = 100 Pa. 

 

Answer.   = 2.88 s. 

 

Problem C  

 

Problem description. Cylinders contain gas. The volumes of the cylinders are 

V1 = 20 l and V2 = 44 l, respectively The pressure in the first cylinder is 

P1 = 2.4 MPa. The pressure in the second cylinder is P2 = 1.6 MPa. Determine the 

partial pressures 1P and 2P for the case when the gas temperature has remained 

unchanged. 

 

Answer. Pa1012.1 6
1 P , Pa1088.1 6

2 P . 

 

Problem D  

 

Problem description. Determine the density ρ of the gas mixture of hydrogen and 

oxygen, if their mass fractions are equal, respectively ω1 = 1/9 and ω2 = 8/9. The 

pressure of the mixture is P = 100 kPa. The temperature of the mixture is T = 300 K. 

 

Answer. ρ = 0.402 kg/m3. 

 

Problem E  

 

Problem description. The volume of the flask is V = 240 cm3. The flask contains gas 

at a temperature of T = 290 K  and a pressure of P = 50 kPa. Determine the amount 

of gas substance ν and the number of its molecules N. 

 

Answer. ν = 4.97×103 mol, N = 2.99×1021. 
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CHAPTER 2. BASICS OF THERMODYNAMICS 

2.1. Thermodynamic Methods 

 

The study of the states of macroscopic systems can be carried out not using 

model ideas about the molecular structure of matter, but based on experimentally 

established principles and laws. The branch of physics in which the general properties 

of matter associated with thermal motion in an equilibrium state and the transition 

process between these states are investigated are called thermodynamics.  

Thermodynamics is based on three principles, which are a generalization of 

experimental data. These principles are carried out regardless of the nature of the 

bodies forming the system and are accepted without evidence as axioms. The list of 

these principles is as follows: the energy principle (the first law of thermodynamics), 

the principle of entropy (the second law of thermodynamics) and the Nernst theorem 

(the third law of thermodynamics). Sometimes the principle of temperature is called 

the zero principle of thermodynamics. 

Thermodynamics establishes relationships and patterns between physical 

quantities measured empirically in macroscopic systems. This approach to study is 

called the phenomenological approach. Physical parameters characterizing the 

macroscopic state of bodies are called thermodynamic parameters. As such 

parameters for gaseous substances can be called pressure, volume and temperature. 

The concepts of energy and volume also have a purely mechanical meaning. The 

concepts of temperature and entropy are generally not applicable to non-macroscopic 

systems. 

Since the research method in thermodynamics is not connected with model 

representations, it can be general and often quite simple. Here, after formal 

mathematical transformations, we get the final result, which can be used to solve 

specific problems. However, the physical meaning of the phenomenon under 

consideration remains unrevealed. The study of molecular kinetic mechanisms is 

carried out by the methods of statistical physics, which makes it possible to clarify 

the limits of applicability of thermodynamic methods. 

Consider the concept of thermodynamic equilibrium. An isolated system is in 

thermodynamic equilibrium if the thermodynamic parameters that determine its state 

remain constant for any length of time. Individual macroscopic parts of the 

equilibrium thermodynamic system are also in equilibrium. Bodies in contact for a 

sufficiently long time assume the same thermal state. Until equilibrium is established, 

bodies can be in a non equilibrium state. We note the following features of 

thermodynamic equilibrium.  

1. Strictly speaking, the state parameters are not constant, but experience small 

fluctuations near their equilibrium average values. Such oscillations are called 

fluctuations, which are neglected in thermodynamics, since they are 

negligible.  

2. Thermodynamic equilibrium is possible only for a large number of particles 

forming a thermodynamic system. 
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The transition of a thermodynamic system from a non equilibrium state to an 

equilibrium state is called the relaxation process. Moreover, each thermodynamic 

parameter has its own transition time, which is called the relaxation time. The 

maximum time of all relaxation times for a given system is called the total relaxation 

time. Determining the relaxation time for various processes is the task of physical 

kinetics. 

The methods of thermodynamics and the results obtained with their help are 

used in the theory of phase equilibria, for example, equilibria between various 

aggregate states. In addition, thermodynamic methods are used in the theory of 

chemical equilibrium. In classical thermodynamics, quantitatively describe the 

equilibrium (reversible) processes, and for non equilibrium processes only possible 

directions for the development of these processes are established. The general theory 

of the macroscopic description of non equilibrium processes is called the 

thermodynamics of non equilibrium processes. The thermodynamics of non 

equilibrium processes describes small deviations from equilibrium states, in 

particular, determines the dependence of the rate of non equilibrium processes on 

external conditions. In addition, the thermodynamics of non equilibrium processes 

contains the formulations of the local first and second principles of thermodynamics 

and the analysis of transport equations. 

Consider the concept of a thermostat and the principle of temperature. Suppose 

that the mass of a certain body is very large compared to another body. The state of 

the first body does not change when the bodies touch. In this case, the first body is 

called a thermostat.  

Numerous experimental experiments served as the basis for the formulation of 

the principle of temperature. The temperature principle is formulated as follows: 

there is a state parameter of the system, which is called temperature. This parameter 

remains unchanged for any process occurring in the thermostat. Since different 

thermal states correspond to different values of internal energy, the temperature is 

also associated with this energy. If two bodies are in thermodynamic equilibrium with 

a third body, then the first two bodies are in thermodynamic equilibrium with each 

other. This statement makes it possible to determine the temperature of different 

bodies. 

Body temperature cannot be directly measured. The temperature can be 

measured by studying the change in the physical properties of the body, which 

depend on temperature (for example, volume, pressure, EMF, electrical resistance, 

radiation intensity, etc.). Temperature measurement methods can be contact and non-

contact. Non-contact methods are also called radiation thermometry or pyrometry. 

These methods measure the intensity of thermal radiation. Contact methods are based 

on comparing the temperature of different bodies with the help of a special test body, 

which is called a thermometric body. Contact thermometers can be gas, liquid and 

solid state. 

Consider the internal energy of a thermodynamic system. Internal energy can 

change due to the work that this system does (δA) or due to the work performed by 

external forces on the system (δA′).In addition, internal energy can vary due to 
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thermal contact (heat exchange) of the system with a more or less heated body (heater 

or refrigerator).  

The amount of energy that a thermodynamic system transfers to external 

bodies through force is called the work δA performed by the system 

   
i

ii TqTQA  ,                                    (2.1.1) 

where qi(T) are generalized coordinates (volume, strength of an external electric 

field, etc.); Qi(T) are generalized forces. 

The amount of energy transferred (or received) by the thermodynamic system 

during heat exchange with external bodies (without changing external parameters) is 

called the heat δQ. Values δA and δQ can be either positive or negative. The system 

transfers part of the energy to external bodies if δA > 0.  

In accordance with Newton’s third law, the work δA′ performed by external 

forces on the system is equal in magnitude and opposite in sign to the work δA that 

the system performs on the external body 

AA   .                                          (2.1.2) 

Work and the amount of heat characterize the change in the internal energy of 

the thermodynamic system and make sense only if there is a process that changes this 

energy. Therefore, the allegations that the system has a supply of work or a supply of 

heat are incorrect. Values δA and δQ are not complete differentials. The amount of 

heat transferred to the system and the work performed by the system depend on how 

the system passes from the initial state to the final one. 

Between thermodynamic systems with different temperatures, a process of 

transferring a certain amount of heat from a warmer system to a less heated system 

can occur. The spontaneous irreversible process of heat transfer between systems 

with different temperatures is called heat transfer. There are three types of heat 

transfer: thermal conductivity, heat transfer through radiation (radiant heat transfer) 

and convective heat transfer.  

Thermal conductivity is associated with the transfer by contact of thermal 

energy from a part of the system with a higher temperature to that part of the system 

that has a lower temperature.  

Radiant heat transfer is associated with the transfer of thermal energy between 

thermodynamic systems that are not in direct contact with each other. In this case, 

thermodynamic systems exchange thermal energy by means of electromagnetic 

radiation. 

Convective heat transfer is associated with the transfer of thermal energy from 

one thermodynamic system to another system, which occurs when a stream of liquid, 

gas or bulk solids moves. 

The unit of heat in the SI system is the joule (symbol J) 

The amount of heat required to heat a substance by one degree (1 K) is called 

heat capacity. The heat capacity per unit mass of a substance is called specific heat 
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Q

m
c




1
,                                               (2.1.3) 

where δQ is the amount of heat transferred to the body; ΔT is a change in 

temperature; m is the mass of matter. 

Molar heat capacity is the heat capacity referred to one mole of a substance 

cc   .                                               (2.1.4)  

The heat capacity of a substance depends on the conditions of its heating. The 

state of the body is determined by temperature and physical parameters that are 

independent of temperature. Such parameters may be volume and pressure. 

Therefore, the heat capacity depends on changes in volume and pressure.  

The heat capacity corresponding to processes at constant pressure is called the 

heat capacity at constant pressure (cP). The heat capacity corresponding to processes 

at a constant volume is called the heat capacity at constant volume (cV).  

Condition cP > cV is always satisfied, since when the thermodynamic system is 

heated at constant pressure, the internal energy of this system increases and work is 

performed. Heating a thermodynamic system at a constant volume is accompanied by 

an increase in only the internal energy of this system 

 

2.2. First Law of Thermodynamics 

 

The first law of thermodynamics is a generalized law of conservation and 

conversion of energy for those macroscopic systems in which thermal motion plays 

an important role. Let us first consider the physical meaning of such thermodynamic 

quantities as internal energy, work, and the amount of heat. 

Thermodynamics and molecular physics mainly study physical processes in 

which there are no changes at the atomic and nuclear levels. Therefore, when 

calculating internal energy, atomic energy and nuclear energy are not taken into 

account. Internal energy is the sum of the kinetic energy of the thermal motion of 

molecules and atoms, and the potential energy of their interaction. Internal energy is 

an unambiguous function of the state of a physical system. The change in internal 

energy is zero ΔU = 0 if the system returns to its original state in the thermodynamic 

process. Consider the equilibrium thermodynamic process that occurs along an 

arbitrary closed loop L. In this case, the following relation holds  

 
L

dU 0 .                                                  (2.2.1) 

Internal energy is a function of the macroscopic parameters of a 

thermodynamic system: U = U(V,T), U = U(P,V), U = U(P,T).  
Internal energy is an additive quantity: the internal energy of a composite 

system is equal to the sum of the internal energies of the components of this system 
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.                                           (2.2.2.)  

The internal energy of one mole of an ideal gas is equal to 

RTkTNU A
2

3

2

3
 .                                  (2.2.3) 

Molecular physics often considers atoms as material points. Consider a system 

of n material points (atoms) that do not interact with each other. An unambiguous 

description of the position of these points requires i = 3n degrees of freedom. To 

calculate the internal energy of an ideal gas, we use the theorem on the equal 

distribution of energy over degrees of freedom. Suppose that the number of degrees 

of freedom of a molecule is i. In this case, the internal energy of the thermal motion 

of one mole of molecules of an ideal gas is 

RT
i

U
2

 .                                                (2.2.4)  

For polyatomic gas molecules at certain temperatures, it is necessary to take 

into account not only translational degrees of freedom it, but also rotational ir and 

vibrational iυ degrees of freedom 

rt tiii   .                                           (2.2.5) 

Each rotational degree of freedom corresponds to energy kT/2. Each 

vibrational degree of freedom corresponds to energy kT, which is the sum of the 

kinetic and potential energy of the vibrational motion. 

Consider a gas in a cylindrical vessel. The gas is located under a weightless 

and movable piston with an area of S. The increase in gas volume corresponds to the 

gas doing work against external pressure forces P. The internal gas pressure is equal 

to the external pressure on the vessel in the case of a quasi-stationary process. 

Therefore, the pressure force is F = PS. Elementary work performed by gas is equal 

to 

PdVPSdxFdxA  ,                           (2.2.6) 

where dx is an infinitesimal displacement of the piston; dV = Sdx is an infinitely 

small change in volume. Formula (2.2.6) is written for the isobaric process P = const.  

The complete work done by the gas upon the transition from state 1 to state 2 is 


)2(

)1(

PdVA .                                        (2.2.7) 

The amount of heat that the thermodynamic system receives, as well as the 

work, depends on how the system transitions from the initial state to the final state. 

However, there is a fundamental difference between the amount of heat and work. 
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Work is a macrophysical form of energy transfer of ordered movement. Heat is a 

combination of microphysical processes of energy transfer.  

The first law of thermodynamics can be formulated as follows: A change in 

internal energy dU in thermal processes occurs due to a change in the amount of heat 

δQ and performing of work δA 

AQdU   ,                                         (2.2.8) 

where δA is the work performed by external forces on the system.  

The amount of heat is an important concept of thermodynamics, so the first law 

of thermodynamics is often formulated as follows 

AdUQ   .                                         (2.2.9) 

The first law of thermodynamics can be formulated as the impossibility of the 

existence of a perpetual motion machine of the first kind. In other words, it is 

impossible to build a periodically operating engine that did not receive energy from 

external sources. 

Consider the internal energy as a function of volume and temperature. In this 

case, we can write the relation for molar heat capacities at a constant volume cV and 

constant pressure cP 

Rcc VP  .                                       (2.2.10) 

Formula (2.2.10) is called the Mayer's relation. Julius Robert Mayer 

(25.11.1814 – 20.03.1878) derived this relation. 

The thermodynamic process that occurs without heat exchange with the 

environment is called the adiabatic process. The equation of the adiabatic process in 

coordinates (T,V) has the form 

const1 TV ,                                     (2.2.11) 

where 

V

P

c

c
  called the adiabatic exponent or Poisson's ratio. Equation (2.2.11) is 

called the Poisson’s equation.  

The equation of the adiabatic process in coordinates (P,V) has the form 

constPV .                                      (2.2.12) 
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The work performed by the gas during the adiabatic transition from state 

(V1,T1) to state (V2,T2) is 
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Consider the work done by an ideal gas in the processes described by gas laws. 

The work performed in the isochoric process is 

0
1

1

 
V

V
V PdVA .                                        (2.2.14) 

The work performed in the isobaric process is 

   1212

2
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TTR
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.                (2.2.15) 

The work performed in the isothermal process is 

1

2ln
2

1
V

V
RT

m
PdVA

V

V
T


  .                                 (2.2.16) 

The internal energy of an ideal gas is a function of temperature only. 

Therefore, for the heat capacities of gases, the behaviour of which is described by 

classical thermodynamics, the following relations can be written. The heat capacity of 

monatomic gases (i = 3) is expressed by the following formulas  

RRccRc VPV
2

5
,

2

3
 .                     (2.2.17) 

The heat capacity of diatomic gases (i = 5) is equal to 

RcRc PV
2

7
,

2

5
 .                                 (2.2.18) 

The heat capacity of polyatomic gases (i = 6) is equal to 

RcRc PV 4,3  .                                  (2.2.19) 

The classical theory of heat capacity does not completely take into account the 

energies associated with internal motion in gas molecules. The heat capacities of 

gases calculated in the framework of the classical theory of heat capacity (formulas 

(2.2.17) – (2.2.19)) do not always coincide with the experimental values of heat 

capacities. The correct values of heat capacity are obtained using quantum theory, 

which takes into account the discrete nature of the energy levels of the molecule. 
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2.3. Entropy 

 

We write the first law of thermodynamics in the form 

PdVdTcPdVdUQ V  .                        (2.3.1) 

Divide both sides of this equation by T 

dV
T

P

T

dT
c

T

Q
V 


.                                       (2.3.2) 

We take into account the following relations: P / T = R / V, dT / T = d lnT, 

dV / V = d lnV. We rewrite equation (2.3.2) with these relations 

 VRTcd
T

Q
V lnln 


.                                (2.3.3) 

The right-hand side of equality (2.3.3) is the total differential. Therefore, the 

left side of this equality is also a full differential. The state function, whose 

differential is δQ / T , is called entropy and is denoted by the symbol S. Thus 

T

Q
dS


 .                                             (2.3.4) 

Dependence (2.3.4) is not satisfied for non equilibrium and irreversible 

processes. It should also be noted that formula (2.3.4) gives a definition of the 

difference in entropy, but not the absolute value of entropy.  

The change in entropy in an isothermal process (T = const), for which the 

energy state of the gas remains constant, and possible changes in characteristics are 

caused only by a change in volume, is  

VRd
V

dV

T

RT

T

PdV
dS ln .                            (2.3.5) 

Therefore, we can write the following relation 

 
)2(

)1(

)2(

)1(

lnVdRdS .                                     (2.3.6) 

As a result of integration of formula (2.3.6), we obtain 

 
1

2
1212 lnlnln

V

V
RVVRSS  .                  (2.3.7) 

We represent gas atoms in the form of identical spheres that can be inscribed in 

a cube with side l = 10–10 m. The number of such cubes for volumes V1 and V2 is 
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N1 = V1 / l3
 and N2 = V2 / l3

, respectively. The number of atoms in a gas mole is 

equal to the Avogadro constant NA. The number of spatial microstates for volumes 

V1 and V2  is 
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                       (2.3.8) 

Consider not too compressed gas when relations N1 >> NA and N2 >> NA is 

satisfied. In this case, we can write 
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 .                                       (2.3.9) 

Therefore, to change the entropy, we can write the formula 

12
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2
12 lnlnln ГkГk

Г
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N

R
SS

A

 ,                  (2.3.10) 

where k = R / NA  is the Boltzmann constant. 

A consequence of formula (2.3.10) is the equality 

ГkS ln .                                              (2.3.11) 

It can be argued that entropy is determined by the logarithm of the number of 

microscopic states of the gas through which this macroscopic state of the gas is 

realized. Equality (2.3.11) is called the Boltzmann formula.  

Formula (2.3.11) allows you to give entropy a visual interpretation. An 

increase in the ordering of the system leads to a decrease in the number of 

microscopic states by which this macroscopic state of the gas is realized.  

We generalize the previous statement. A system that is left to itself moves in 

the direction of an equilibrium state. Therefore, in a system that is left to itself, 

entropy does not decrease.  

Consider the change in entropy in the processes of an ideal gas. We transform 

the formulas (2.3.3) and (2.3.4) 

 VRTcddS V lnln  .                                 (2.3.12) 

The change in entropy during an isothermal process is described by the  

formula (2.3.7).  

The change in entropy during the isochoric process (dV = 0) is equal to 

1

2
12 ln

T

T
cSS V ,                                    (2.3.13) 
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therefore, entropy increases with increasing temperature. This result can be explained 

by the fact that the average particle energy increases with temperature, and therefore 

the number of possible energy states also increases.  

The change in entropy in the adiabatic process (δQ = 0) is equal to 

dS = δQ / T = 0. Adiabatic expansion of gas is accompanied by an increase in 

entropy due to an increase in gas volume. On the other hand, entropy decreases due to 

a decrease in temperature with an increase in volume. These two trends completely 

cancel each other out, and entropy remains unchanged S = const.  

A cyclic process is the process by which the system returns to its original state. 

The cyclic process is depicted on the process diagram of a closed curve.  

Work done as a result of a cyclic process is 

 
)2(

)1(

)2(

)1(

21 LL

PdVPdVA ,                                  (2.3.14) 

where L1 and L2 are the parts that together make up a closed cycle curve in a process 

diagram.  

We write the first law of thermodynamics for a cyclic process 

   PdVdUQ .                                 (2.3.15) 

The closed-loop integral of the total differential is zero 

  011 UUdU .                                   (2.3.16) 

Hence 

   APdVQ .                                   (2.3.17) 

All work done in a cycle is done at the expense of the amount of heat that has 

entered the system.  

By its significance, a system that performs a cyclic process is a heat engine that 

does work due to the amount of heat entering this machine from a thermostat. The 

efficiency of the heat engine is 

1

21
Q

Q
h  ,                                            (2.3.18) 

where Q1 is the amount of heat that entered the heat engine; Q2 is the amount of heat 

that leaves the heat engine.  

The simplest in content, but important in principle, is the Carnot cycle. The 

Carnot cycle (this model was proposed by Nicolas Léonard Sadi Carnot (1.06.1796 – 

24.081832)) consists of two isotherms at temperatures T1 and T2 between states 1, 2 

and 3, 4; as well as two adiabats between states 2, 3 and 4, 1. When performing the 

Carnot cycle, two thermostats are needed: a heat transmitter (heater) with a 

temperature of T1 and a heat receiver (refrigerator) with a temperature of T2.  
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The efficiency of the Carnot cycle is 

1

21
T

T
С  .                                         (2.3.19) 

The efficiency factor of the Carnot cycle does not depend on the working 

substance and on the structural details of the design of the heat engine, but depends 

only on the ratio of the temperatures of the heat transmitter and heat receiver. The 

choice of an absolute thermodynamic temperature scale is based on this property.  

 

2.4. Second Law of Thermodynamics 

 

Consider the efficiency of the heat engine and the Carnot cycle. The following 

statement is true: the efficiency of an irreversible Carnot cycle machine cannot be 

greater than the efficiency of a reversible machine that has the same heat sink and 

heat transfer.  

The coefficient of efficiency of a reversible Carnot cycle is greater than the 

coefficient of efficiency of any other reversible cycle in which the maximum and 

minimum temperatures are equal, respectively, to the temperature of the heat 

transmitter and the temperature of the heat receiver of the Carnot cycle.  

Consider a system consisting of two series-connected heat engines. The system 

includes a thermostat with a temperature of T1. The heat taken from the thermostat is 

transferred to a reversible machine 1 operating according to the Carnot cycle. This 

machine performs work δA1 throughout its cycle and transfers heat δQ to heat 

engine 2. Transmission occurs at temperature T. The heat engine 2 may cycle in a 

reversible or irreversible manner. Temperature T is not constant and depends on the 

processes that occur in machine 2 and its environment. Thermal engine 2 performs 

work A2 in its cycle. The cycle time of the heat engine 1 is much shorter than the 

cycle time of the heat engine 2. Therefore, during one cycle of operation of the heat 

engine 1, the temperature T can be considered constant. 

The total work A performed by both heat engines during the cycle of operation 

of heat engine 2 is 

   
T

Q
TQAAAA


 1121 .                  (2.4.1) 

The only result of the cycle cannot be the production of work. Consequently, 

the only possibility for the functioning of this system is the entry of work into the 

system, or, in extreme cases, the equality to zero of the work produced by the system 

0A .                                                (2.4.2) 
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Based on formulas (2.4.1) and (2.4.2), we can write the following inequality 

  0
T

Q
,                                                (2.4.3) 

insofar as T1 = const > 0. Formula (2.4.3) is called the Clausius inequality and holds 

for any cycles.  

Consider the case of a heat engine 2 operating in a reversible cycle. In this 

case, for the Clausius inequality, we can use the equal sign, i.e. A < 0. The heat 

engine 1 operates in a reversible cycle by definition. Consequently, the entire system 

of heat engines 1 and 2 also works in a reversible cycle. Therefore, a system of two 

heat engines can be reversed even then A > 0, which contradicts the first law of 

thermodynamics. Consequently, condition A < 0 cannot be used, and only the 

possibility of the equal sign A = 0 remains.   

 Summarizing the foregoing, it can be argued that for reversible processes in 

Clausius inequality (2.4.3) only the equal sign can be used, and for reversible 

processes both signs can be used. 

Consider reversible cycles. In this case, inequality (2.4.3) has the form 

  0
T

Q
.                                               (2.4.4) 

Therefore, under the sign of the integral is the full differential δQ / T = dS, 

where S is entropy. These considerations allow us to conclude that the formula for 

the entropy of an ideal gas is generalized to an arbitrary case. In addition, it can be 

argued that the Boltzmann formula is valid not only for an ideal gas, but also for 

arbitrary systems. 

Consider a closed system, i.e. a system isolated from other systems. Suppose 

that in a certain process this system goes from state 1 to state 2. We return the system 

using a reversible process to state 1. In this case, of course, it is necessary to 

eliminate the isolation of the system. As a result of the system returning to a state, a 

cycle is formed to which the Clausius inequality can be applied 

  
)1()2(

21

0
LL T

Q

T

Q

T

Q 
.                               (2.4.5) 

The system remained isolated during the transition 1  2 along the path L1. 

Therefore, the amount of heat δQ in the integral taken along the path L1 is zero. All 

this integral is also equal to zero. On the other hand, in the reversible transition 2  1 

in the integrand, we can assume that δQ / T = dS. Then formula (2.4.5) can be 

rewritten as follows 
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12 SS  .                                                        (2.4.6) 

Upon the transition of a closed system from state 1 with entropy S1 to state 2 

with entropy S2, the entropy either increases or remains unchanged. This statement, 

together with the statement on the existence of entropy (2.3.4), is the content of the 

second law of thermodynamics.  

More briefly, the second law of thermodynamics can be formulated as follows: 

in the processes of an isolated system, the entropy does not decrease. An essential 

feature of this statement is that it relates to isolated systems. In uninsulated systems, 

entropy can increase and decrease, and remain unchanged depending on the nature of 

the process. 

It should be noted that in an isolated system, entropy remains unchanged only 

in reversible processes. Entropy does not decrease in irreversible processes.  

Thermodynamic processes occur, as a rule, irreversibly in a system left to itself 

(isolated). This means that practically the entropy of an isolated system always 

grows. An increase in entropy means the system is approaching the state of 

thermodynamic equilibrium.  

Thus, the first law of thermodynamics describes the quantitative relations 

between the quantities characterizing a system with various changes in the state of 

this system. But the first law of thermodynamics does not say anything about the 

direction of these changes. The second law of thermodynamics indicates the direction 

of changes in the system if these changes should occur or the absence of changes if 

these changes cannot occur. 

Entropy is proportional to the number of microscopic states by which this 

macroscopic state is realized. An increase in entropy in an isolated system means a 

change in the characteristics of the system in the direction of the most probable, i.e. 

equilibrium state. However, in a system, in principle, fluctuations are possible, in 

which a change in the characteristics of the system occurs in the direction of less 

likely macroscopic states. At this time interval, the entropy of an isolated system does 

not increase, but decreases or remains unchanged.  

Thus, the law of not decreasing entropy in an isolated system does not contain 

an absolute prohibition of decreasing entropy. The relative role of fluctuations 

increases for small systems, for example, systems with a small number of particles. 

Consequently, in systems with a relatively small number of particles, the probability 

of violating the ban on a decrease in entropy is much greater than in systems with a 

large number of particles.  

However, in the practical case, the law of not decreasing entropy in isolated 

systems that have a sufficiently large number of particles can be considered as 

absolute. 
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The calculation of the entropy of irreversible processes is based on the fact that 

entropy is a function of the state. Suppose that a system has passed from one state to 

another through an irreversible process. It is logical to mentally transfer the system 

from the first state to the second using some reversible process and calculate the 

change in entropy that occurs in this case. This change is equal to the change in 

entropy in an irreversible process. 

Consider an example of calculating the change in entropy in an irreversible 

process of equalizing the pressure in a gas. The gas is divided into two parts. These 

parts initially do not touch each other and have different pressures but the same 

temperature T. Suppose the system is thermally isolated. The density of gases is such 

that these gases can be considered ideal gases. This means that the internal energy of 

gases depends only on temperature and does not change after gas mixing, because gas 

temperatures were initially the same.  

In this case, the equilibrium process, replacing the non equilibrium one, 

consists in the fact that each of the parts of the gas in the volumes V1 and V2 expands 

isothermally to the full volume V1 + V2. In this case, the change in entropy is 
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Formula (2.4.7) is written taking into account the fact that TdS = dU + PdV 

(dU = 0). In addition, we take into account that P / T = mR / μV , where μ is the 

molar mass of gas. Then, as a result of integration for changing the entropy, we can 

write 
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Pressure after gas mixing can be found according to Dalton's law 
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2.5. Thermodynamic Potentials 

 

Thermodynamics includes consideration of the full differentials of various state 

functions. Different pairs of variables can be taken as independent variables of such 

differentials. Consider function F, which can be investigated as a function with 

arguments x, y, or as a function with arguments x, z. The total differentials of the 

function in these cases will have the form 
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x

F
dF
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 ,                                    (2.5.1) 
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dz
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 .                                   (2.5.2) 

Formulas (2.5.1) and (2.5.2) contain derivatives xF  / , the meaning and 

meaning of which are different. For formula (2.5.1), the value xF  /  is the 

derivative with a constant value of y , and for the formula (2.5.2), the value xF  /  

is the derivative with a constant value of z. Values y and z in order to avoid 

confusion put as an index with the corresponding derivatives 
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We consider the full differentials of functions z = z(x,y), y = y(x,z), 

x = x(y,z) and take into account the formula (2.5.3). In this case, we can write the 

following equality 
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Suppose that the value dΦ is a total differential and can be written as 

QdyPdxdФ  ,                                      (2.5.5) 

where P = P(x,y) and Q = Q(x,y) are known functions.  

Using the definition and properties of the total differential, we can write the 

equalities 
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The main functions of the state include: pressure P, volume V, temperature T, 

internal energy U, enthalpy H (enthalpy can be determined as a function of the state 

of a thermodynamic system, which is equal to the sum of the internal energy and the 

product of pressure by volume: H = U + PV ) and entropy S.  

We consider the second law of thermodynamics for reversible processes in the 

form 

PdVdUTdS  ,                                       (2.5.7) 

where it is taken into account that δQ = TdS.  

We rewrite (2.5.7) in the form 

TdSdUPdVA  .                                 (2.5.8) 
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The work performed by the system in the isothermal process is 

  dFTSUdA  .                               (2.5.9) 

 Consequently, the infinitesimal work performed by the system in the 

isothermal process is a complete differential.  Function F is called free energy 

(concept of free energy was developed by Hermann Ludwig Ferdinand von 

Helmholtz (31.08.1821 – 8.09.1894)) or the Helmholtz function  

TSUF  .                                           (2.5.10) 

Free energy is a function of state.  

Consider a function G that is defined as follows 

TSHPVFG  .                                 (2.5.11) 

Function G is called the Gibbs thermodynamic potential. Thermodynamical 

potential was named after Josiah Willard Gibbs (11.02.1839 – 28.04.1903). 

Each of the thermodynamic functions U, H, F, G  can be represented as a 

function of any two independent variables taken from the following list P, V, T, S. 

The total differentials of these functions are equal 

PdVTdSdU  ,                                        (2.5.12) 

VdPTdSdH  ,                                         (2.5.13) 

pdVSdTdF  ,                                       (2.5.14) 

VdPSdTdG  .                                       (2.5.15) 

It follows from formula (2.5.12) that the quantities T and P play the role of 

generalized forces if internal energy is considered as potential energy expressed 

through the generalized coordinates S and V, i.e. U = U(S,V). This gives reason to 

call function U = U(S,V) the thermodynamic potential. 

Arguing in this way, we can conclude that enthalpy H = H(S,P) is the 

thermodynamic potential with respect to variables (S,P); free energy F = F(T,V) is 

the thermodynamic potential with respect to variables (T,V); Gibbs thermodynamic 

potential G = G(T,P) is the thermodynamic potential with respect to variables 

(T,P).  
It can be shown that the heat capacities at constant values of pressure and 

volume are interconnected as follows 

 
 T

P
VP

PV

TV
Tcc






/

/
2

.                              (2.5.16) 



 53 

Formula (2.5.16) in combination with the previously obtained formulas for 

dU, dH, and dS allows us to determine the values of U, H and S if the values of P, 

V, T and one of the heat capacities cP or cV are known. On the other hand, free 

energy F and the Gibbs function G  are expressed in terms of U, H and S, therefore 

they can also be determined. 

This fixes the properties of the substance, which must be measured in order to 

be able to describe all of its thermodynamic properties. In this case, only pure 

substances are meant. 

Consider the criteria of thermodynamic stability. The main criterion for 

thermodynamic stability can be formulated as follows: the state of an adiabatic 

isolated system is stable at the maximum entropy of the system. Clausius inequality 

for an infinitely small irreversible process has the form 

TdSQ  .                                             (2.5.17) 

We rewrite equation (2.5.17) taking into account the first law of 

thermodynamics 

0 TdSPdVdU .                               (2.5.18) 

We list several important particular cases of the stability criterion that follow 

from equation (2.5.18). 

The stability criterion for a system with constant volume and entropy has the 

form  

0dU .                                            (2.5.19) 

Consequently, the state with a minimum of internal energy is stable U. 

The stability criterion for a system with constant pressure and entropy has the 

form  

  0PVUd .                                   (2.5.20) 

Consequently, the state with a minimum value of enthalpy is stable H. 

The stability criterion for a system with a constant volume and temperature has 

the form 

  0TSUd .                                     (2.5.21) 

Therefore, a stable state is at a minimum value of free energy F. 

The stability criterion for a system with constant temperature and pressure has 

the form 

0dG .                                       (2.5.22) 

Consequently, the state is stable at the minimum value of the Gibbs 

thermodynamic potential G. 
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The stability of the state of a thermodynamic system is ensured by the fact that 

when a system is brought out of equilibrium, factors arise in it that tend to return this 

system to an equilibrium position. In thermodynamics, this statement is called the  

Le Chatelier’s principle. The principle was named after Henry Louis Le Chatelier 

(8.10.1850 – 17.09.1936) and Karl Ferdinand Braun (6.06.1850 – 20.04.1918). 

The average energy of a thermodynamic system can be expressed as follows 






Z
W

ln
.                                        (2.5.23) 

where  kT/1 . 

The value 

  
i

iWZ exp                                     (2.5.24) 

is called the statistical sum. 

Free energy F is related to the partition function by the ratio 

ZkTF ln .                                         (2.5.25) 

The remaining thermodynamic potentials can be expressed in terms of free 

energy, which, in turn, is related to the partition function by the formula (2.5.24). 

Thus, knowledge of the statistical sum allows a complete analysis of the 

thermodynamic state of the system.  

 

2.6. Third Law of Thermodynamics 

 

Entropy as a function of the state of the system in a reversible process is 

specified up to an arbitrary constant. Therefore, the second law of thermodynamics 

does not uniquely determine the difference in the entropies of two states related to 

different systems. The problem of determining entropy in such cases is solved by the 

fundamental Nernst theorem, established experimentally. Nernst's theorem cannot be 

deduced from the first and second laws of thermodynamics. This theorem applies 

only to the thermodynamic equilibrium states of the system. Nernst theorem was 

named after Walther Hermann Nernst (25.06.1864 – 18.11.1941). 

There are several formulations of the Nernst theorem, which are equivalent to 

each other. 

1. The entropy S of any system at absolute zero temperature T = 0 is a 

universal constant S0, which does not depend on any variable parameters 

(pressure, volume, etc.). Guillaume Amontons (08.31.1663 - 10.10.1705) 

concluded that there is an absolute zero temperature. 

2. Entropy S tends to a certain finite limit S0 as the temperature tends to zero 

T → 0. The limit value S0 does not depend on the final state of the system.  
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3. The increment of entropy ΔS does not depend on the specific values of the 

thermodynamic parameters of the state of the system and tends to a well-

defined finite limit. 

4. All processes at an absolute zero temperature T = 0, at which the system 

passes from one equilibrium state to another, occur without a change in 

entropy. 

The choice of a universal constant S0 equal to entropy at an absolute zero of 

temperature is arbitrary. Typically, the entropy of any equilibrium system at an 

absolute zero temperature is taken equal to zero S0 = 0.  

The validity of the Nernst theorem can only be proved by an experimental 

verification of the consequences of this theorem. Nernst's theorem is usually called 

the third law of thermodynamics. 

Consider the consequences of Nernst's theorem. The heat capacities of all 

substances should tend to zero while absolute thermodynamic temperature tends to 

zero 

  0at0  TTc ,                                  (2.6.1) 

where c(T) = cV at V = const and c(T) = cP at P = const.  

The relation (2.6.1) is confirmed experimentally for all studied systems. 

Consider the case when the absolute thermodynamic temperature tends to zero. 

Then the isobaric coefficient of thermal expansion αP and the isochoric thermal 

coefficient of pressure βV also tend to zero 
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For very low temperatures T ≈ 0, the Mendeleev – Clapeyron equation is not 

satisfied even in those cases when the forces of interaction of the molecules are 

negligible.  

A consequence of formula (2.6.3) is that near absolute zero the gas pressure is 

practically independent of temperature and is a function of only the density P = P(ρ). 
Gases whose pressure depends on density are called degenerate gases. The state of 

the gas in which the dependence is observed is called a degenerate state. The internal 

energy U of a gas for a degenerate state is independent of temperature and is 

determined only by the density of the gas U = U(ρ) 
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This property of internal energy is confirmed experimentally. In particular, it 

was found that the electron gas in metals even at ordinary temperatures does not 

make a noticeable contribution to the heat capacity. According to the definition of 

heat capacity, such a property can be observed if relation (2.6.4) holds and 

U ≠ U(T). 
The system cannot be cooled to absolute zero using finite changes in 

thermodynamic parameters. From the relation  

0atconst
1

 T
c

V

dP

dT

T P

P                      (2.6.5)  

it follows that the pressure change dP should increase unlimitedly for T → 0 for the 

temperature to change by a finite value dT.  

The third law of thermodynamics is a macroscopic manifestation of the 

quantum properties of thermodynamic systems. The third law of thermodynamics 

contradicts the notions of classical mechanics, according to which, even at an 

absolute zero of temperatures, the system must be in a continuous set of dynamic 

states.  

In essence, it is more correct to consider the Nernst theorem simultaneously 

with the laws of ideal gases. The laws of ideal gases are also ultimate laws, namely, 

laws when pressure tends to zero P → 0.  

Thus, along with the first and second laws of thermodynamics, two more limit 

laws should be considered 

RTPV
P


0

lim  for gaseous systems,                       (2.6.6) 

0lim
0




S
T

 for condensed systems.                         (2.6.7) 

The indicated relations (2.6.6) and (2.6.7) are based on empirical data, i.e. in 

the framework of thermodynamics, they remain theoretically unprovable.  

 

Test questions 

 

1. List the three laws of thermodynamics. 

2. Indicate the features of thermodynamic equilibrium. 

3. Give a description of the three main types of heat transfer. 

4. Write down the formula that determines the molar heat capacity of the 

substance. 

5. Describe the types of energy that make up the internal energy of a substance. 

6. Is the statement that the internal energy of one mole of an ideal gas depends on 

its volume true? 
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7. List the types of degrees of freedom that must be considered for polyatomic 

gas molecules. 

8. Give the mathematical form for writing the first law of thermodynamics. 

9. Write down the Mayer’s relation. 

10. Give the ratio for the work of an ideal gas, which is performed in an adiabatic 

process. 

11. Draw a graph of the equation U = f (P), where U is the internal energy and P 

is the pressure of an ideal gas. 

12. Write down the Boltzmann formula. 

13. Explain the immutability of entropy during adiabatic expansion of the gas. 

14. Provide a detailed description of the Carnot cycle. 

15. Write down Clausius inequality. 

16. Formulate the second law of thermodynamics. 

17. Is the statement true that the entropy of an isolated system is unchanged? 

18. Write down the formula for the Helmholtz function. 

19. Formulate a stability criterion for a system with constant volume and entropy. 

20. What parameters affect the internal energy of a degenerate state of a gas? 

 

Problem-solving examples 
 

Problem 2.1 

 

Problem description. Calculate the specific heat cV and cP of a mixture of neon and 

hydrogen. Mass fraction of gases, respectively, equal to ω1 = 0.8 and ω2 = 0.2. The 

specific heat of neon is equal to cV1 = 624 J/(kg·K), cP1 = 1.04×103 J/(kg·K). The 

specific heat of hydrogen is equal to cV2 = 1.04×104 J/(kg·K), 

cP2 = 1.46×104 J/(kg·K). 

 

Known quantities: ω1 = 0.8, ω2 = 0.2, cV1 = 624 J/(kg·K), cP1 = 1.04×103 J/(kg·K), 

cV2 = 1.04×104 J/(kg·K), cP2 = 1.46×104 J/(kg·K). 

 

Quantities to be calculated: cV, cP. 

 

Problem solution. The heat required to heat the mixture to a temperature of ΔT is 

  TmmcQ V  21 ,                                       (P.2.1.1) 
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where cV is the specific heat of the mixture calculated at a constant volume; m1 is a 

mass of neon; m2 is a mass of hydrogen. 

Heat from formula (2.1.1) can be calculated in another way 

  TmcmcQ VV  2211 ,                                 (P.2.1.2) 

where cV1 and cV2 are specific heat capacities at a constant volume for neon and 

hydrogen, respectively. 

We equate the right-hand sides of formulas (2.1.1) and (2.1.2) 

  221121 mcmcmmc VVV  .                             (P.2.1.3) 

We express the heat capacity at a constant volume from the formula (P.2.1.3) 

21

2
2

21

1
1

mm

m
c

mm

m
cc VVV





 .                         (P.2.1.4) 

Quantities 
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 ,                                           (P.2.1.5) 
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
                                             (P.2.1.6) 

determine the mass fraction of neon and hydrogen, respectively. 

We rewrite formula (P.2.1.4), taking into account the notation in formulas 

(P.2.1.5) and (P.2.1.6) 

2211  VVV ccc  .                                     (P.2.1.7) 

We substitute the numerical values in the formula (P.2.1.7) 

 KkgJ/1058.22.01004.18.0624 34 Vc . 

Arguing in this way, one can obtain a formula for calculating the specific heat 

of a mixture at constant pressure 

2211  PPP ccc  ,                                       (P.2.1.8) 

where cP1 and cP2 are specific heat at constant pressure for neon and hydrogen,  

respectively. 

We substitute the numerical values in the formula (P.2.1.8) 

 KkgJ/1075.32.01046.18.01004.1 343 Pc . 
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Answer. The specific heat of the mixture at constant values of volume and pressure 

are cV = 2.58×103 J/(kg·K) and cP = 3.75×103 J/(kg·K), respectively. 

 

Problem 2.2 

 

Problem description. Oxygen occupies volume V1 = 1 m3 and is under pressure 

P1 = 200 kPa. The gas was initially heated at constant pressure to a volume of 

V2 = 3 m3. Then the gas was heated at a constant volume to a pressure of 

P2 = 500 kPa. Calculate the following values: 1) change in the internal energy of the 

gas ΔU; 2) the work that gas performed A; 3) the amount of heat Q transferred to 

the gas. 

 

Known quantities: V1 = 1 m3, P1 = 200 kPa, V2 = 3 m3, P2 = 500 kPa. 

 

Quantities to be calculated: ΔU, A, Q. 

 

Problem solution. The state of the gas described in the condition is denoted by: 

(P1,V1,T1), (P2,V2,T2), (P3,V3,T3) for state 1, 2 and 3, respectively. 

The change in the internal energy of a gas during its transition from state 1 to 

state 3 is expressed by the formula 

TmcU V  ,                                                (P.2.2.1) 

where cV is the specific heat of the gas at a constant volume; m is the mass of gas; 

ΔT is the temperature difference corresponding to the final (3) and initial (1) states: 

ΔT = T3 = T1. 

The heat capacity of gas at a constant volume is 



Ri
cV

2
 ,                                                      (P.2.2.2) 

where i is the number of degrees of freedom of gas; μ is the molar mass of gas; R is a 

gas constant. 

The change in the internal energy of the gas is 

 13
2

TTR
mi

U 
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.                                       (P.2.2.3) 

The equation of state of an ideal gas (the Mendeleev-Clapeyron equation) has 

the form 

RT
m

PV


 ,                                               (P.2.2.4) 

where P is gas pressure; V is the volume of gas. 
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The initial and final temperatures are equal 
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 .                                               (P.2.2.6) 

In this case, formula (P.2.2.3) can be rewritten as follows 

 1122
2

VPVP
i

U  .                                    (P.2.2.7) 

We substitute the numerical values in the formula (P.2.2.7) 

  J1025.311023105
2

5 655 U . 

The total work done by gas is 

21 AAA  ,                                              (P.2.2.9)  

where A1 is the work done in the section 1-2; A2 is the work done in the section 2-3. 

In section 1-2, the pressure is constant. Работа в этом случае равна 

 1211 VVPA  .                                      (P.2.2.10) 

In section 2-3, the gas volume does not change and, therefore, the gas operation 

in this section is zero (A2 = 0).In this way 

 1211 VVPAA  .                                (P.2.2.11) 

We substitute the numerical values in the formula (P.2.2.11) 

  J10413102 55 A . 

According to the first law of thermodynamics, the amount of heat transferred to 

a gas is equal to the sum of the work A done by the gas and the change in internal 

energy ΔU 

AUQ  .                                             (P.2.2.12) 

We substitute the numerical values in the formula (P.2.2.12) 

J1065.31041025.3 656 Q . 

 

Answer. The change in the internal energy of the gas is ΔU = 3.25×106 J. Work done 

by gas is A = 4×105 J. The amount of heat transferred to the gas is Q = 3.65×106 J. 
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Problem 2.3  

 

Problem description. Calculate the change in entropy ΔS when heating water of mass 

m = 100 g from temperature t1 = 0°C to temperature t2 = 0°C and the subsequent 

conversion of water into vapour at the same temperature. 

 

Known quantities: m = 100 g, t1 = 0°C, t2 = 0°C. 

 

Quantities to be calculated: ΔS. 

 

Problem solution. The total change in entropy for this problem is 

SSS  ,                                            (P.2.3.1)  

where S  is a change in entropy when water is heated; S   is a change in entropy 

when water is converted into vapour. 

The change in entropy is generally equal 


2

0
12

T

dQ
SSS ,                                          (P.2.3.2) 

where dQ is the amount of heat transferred to the system in a thermodynamic process 

of 0-2; T is the system temperature. 

With an infinitely small change in the temperature dT of the heated body, the 

amount of heat is expended 

mcdTdQ  ,                                                 (P.2.3.3) 

where m is body mass; c is the specific heat of the body. 

Substituting the expression for the amount of heat dQ from the formula 

(P.2.3.3) into the formula (P.2.3.2), we find the change in entropy when the water is 

heated 
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We transform the formula (P.2.3.4) 
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We substitute the numerical values in the formula (P.2.3.5) 

J/K103.1
273

373
ln1018.41.0 23 
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The change in entropy during the conversion of water into vapour (T2 = const) 
is 

2

2

12

1

T

Q
dQ

T
S   .                                     (P.2.3.6)  

The amount of heat associated with the phase transition is 

mQ  ,                                               (P.2.3.7) 

where λ is the specific heat of vaporization. 

Therefore, we can write formula (P.2.3.6) in the following form 

2T

m
S


 .                                                (P.2.3.8) 

We substitute the numerical values in the formula (P.2.3.8) 

J/K1017.6
373

1.0103.2 2
6




S . 

The total change in entropy upon heating of water and its subsequent 

transformation into steam, according to formulas (P.2.3.1), (P.2.3.5), and (P.2.3.8), is 

J/K1047.71017.6103.1 222 S . 

Answer. The total change in entropy is ΔS = 7.47×102 J/K. 
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Problems 
 

Problem A 

Problem description. The difference in specific heat capacities cP – cV of a certain 

diatomic gas is 260 J/(kg·K). Find the molar mass μ of the gas and its specific heats 

cV and cP. 

 

Answer. μ = 0.032 kg/mol, cV  = 650 J/(kg·K), cP  = 910 J/(kg·K). 

 

Problem B  

Problem description. Oxygen was heated at constant pressure P = 80 kPa. Oxygen 

volume increased from V1 = 1 m3  to V2 = 3 m3. Calculate the following values: 1) 

change in internal energy ΔU of oxygen; 2) work A done by oxygen during 

expansion; 3) the amount of heat Q transferred to oxygen. 

 

Answer. ΔU = 4×105 J, A = 1.6×105 J, Q = 5.6×105 J.  

 

Problem C  

Problem description. Calculate the work A, which is accomplished by isothermal 

expansion of hydrogen with a mass of 5 g, having a temperature of T = 290 K, if the 

volume of gas has increased three times. 

 

Answer. A = 6.62×103 J. 

 

Problem D  

Problem description. Carbon dioxide under pressure P1 = 100 kPa and having a 

temperature of T1 = 290 K was compressed in an adiabatic process to a pressure of 

P2 = 100 kPa. Determine the temperature T2 of the gas after compression. 

 

Answer. T2 = 345 K. 

 

Problem E  

Problem description. The ideal gas completes the Carnot cycle. Heater temperature is 

T1 = 470 K. Cooler temperature is T2 = 280 K. Gas performs the work A = 100 J of 

isothermal expansion. Determine the thermal efficiency η of the cycle, as well as the 

amount of heat Q2 that gives gas to the cooler during isothermal compression. 

 

Answer. η = 0.404, Q2 = 59.6 J. 
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CHAPTER 3. REAL GASES AND LIQUIDS 
 

3.1. Interaction Forces 

 

The electrons near the nucleus in the atom are held by the Coulomb forces of 

attraction of unlike charges. The atom as a whole is electrically neutral. Molecules 

are made up of atoms. The forces that hold together atoms in a molecule are also 

electric in nature. However, the appearance of these forces has a more complex 

nature in comparison with the Coulomb forces. There are basically two types of 

atomic bonds in a molecule, namely an ionic bond and a covalent bond. 

Consider the ionic bond. The bonding strength of various electrons in an atom 

with an atom as a whole is different. This force depends on the structure of the atom. 

In some atoms there is an electron or several electrons that are very weakly bound to 

the atom as a whole. These electrons are easily lost by the atom, resulting in the 

formation of a positively charged ion. 

In other cases, on the contrary, not only all electrons are tightly bound to the 

atom, but under favourable conditions, the atom captures an electron or two electrons 

and turns into a negatively charged ion.  

Between the ions there are Coulomb forces of attraction, which provide the 

formation of the molecule. Among these molecules is, for example, a molecule of 

sodium chloride NaCl. The structure of this molecule in the form of ions can be 

written as Na+Cl–. Therefore, the molecule of sodium chloride consists of a positive 

ion Na+ and a negative ion Cl–.  
The potential energy of attraction of ions Na+ and Cl– is 

 
00
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e
rWp


 ,                                          (3.1.1) 

where e is an electron charge; ε0 is an electric constant; r0 is the equilibrium distance 

between the ions. 

Along with potential energy Wp, there is a positive energy associated with the 

repulsive forces between the ions when they are very close together, since the ions 

cannot penetrate each other. These forces are large only at small distances between 

ions and quickly decrease with distance. The contribution of these forces to the total 

ion interaction energy is small and does not exceed about 10%.  

From a physical point of view, an ionic bond is characterized by a complete 

charge exchange between ions. The amount of charge exchanged by ions is a multiple 

of the charge of an electron. Partial charge exchange between ions is characteristic of 

a covalent bond. 

Consider a covalent bond. The ionic bond is not able to explain the existence of 

molecules consisting of two identical atoms, such as, for example, H2, O2, N2, etc. 

Two atoms enter the molecule on an equal footing, and there is no reason for one of 

them to become a positive ion, and for the other atom there is no reason to become a 

negative ion. The bond existing in such molecules is called a covalent bond.  
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A full understanding of the essence of covalent bonds is possible only within 

the framework of quantum mechanics, but the physical essence of the matter can be 

clearly explained in the framework of classical concepts. 

We place a negative ion in the middle between positively charged ions. The 

charge of a negatively charged ion is equal in magnitude to the charge of a positive 

ion. In this case, from the side of a negatively charged ion, an attractive force acts on 

positive charges. This force is four times greater than the force of repulsion of 

positive charges from each other. As a result, a force acts on positive charges, which 

tends to bring them closer, i.e. force of gravity. The forces acting on a negative 

charge from the side of positive charges are mutually balanced. This is the process of 

the emergence of covalent bonds. However, such a static equilibrium is not possible. 

Quantum mechanics explains how the movement of electrons occurs, in which, on 

average, some electrons spend most of their time between positively charged nuclei 

during their motion. Consequently, these electrons form an effective negative charge 

between the positively charged nuclei of the interacting atoms. In this case, two 

electrons are considered, the motion of which is socialized, and it cannot be said 

which of the atoms of the molecule these electrons belong to. Therefore, the bond 

resulting from this is called the covalent bond. 

A solid state arises when the binding energy of molecules is much greater than 

the kinetic energy of their thermal motion. As a result of this, an ordered structure 

arises corresponding to a minimum of free energy. 

Ionic and covalent bonds are important for retaining not only atoms in a 

molecule, but also molecules and atoms in a solid. 

As a result of these processes, the crystalline structure of a solid forms. If the 

crystalline structure arises due to covalent bonding, then the crystals are called 

covalent. If the crystalline structure arises due to ionic bonding, then the crystals are 

called ionic crystals.  

The next type of crystals are molecular crystals with molecules located in the 

nodes of the crystal lattices. In this case, very weak forces act between the molecules, 

which are called van der Waals forces (named after Johannes Diderik van der Waals 

(23.11.1837 – 8.03.1923)). These forces arise due to the fact that with a small shift of 

negative and positive charges in a neutral molecule, it ceases to be neutral, turning 

into a dipole. The phenomenon of the formation of a dipole moment in a molecule is 

called polarization. 

The approach of molecules leads to their mutual polarization. The sides of the 

polarized molecules facing each other have charges of the opposite sign. Such 

mutually polarized molecules attract each other. These attractive forces are called 

dispersion forces.  

At small distances between the molecules, repulsive forces act. These forces 

are found in a very small region, on the order of the size of the atom. This interaction 

can be characterized by a distance of r0. The value of r0 depends on the type of 

molecule. At distances r > r0 between the molecules, attractive forces act. At 

distances r < r0 between the molecules, repulsive forces act. The potential energy of 

interaction of molecules is approximated by a formula of the type 
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 
mnp

r
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r

a
rW 21  .                                       (3.1.2) 

In the formula (3.1.2), the constant values of a1, a2, n, m are selected from the 

requirements of the best approximation of the real interaction potential of the 

molecules.  

In most cases, a good approximation is the following selection of parameters  

n = 12, m = 6. The interaction potential obtained in this case can be written as 
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where ε0 is the minimum potential interaction energy for r = r0; σ is the distance 

between the molecules when the potential interaction energy  is zero Wp = 0.  

The interaction potential described by formula (3.1.3) is called the Lennard-

Jones potential (potential was first proposed by John Edward Lennard-Jones 

(27.10.1894 – 1.11.1954)). This potential is widely used in the theory of liquids and 

gases.  

Let us estimate the dependence of the van der Waals forces on the distance. 

Consider two polarized molecules whose centres are at a distance of r from each 

other. The dipole moments of the molecules are directed along one straight line. The 

distances between the polarization charges q and q′ molecules are 2l and 2l′, 
respectively. In this case, the electric field at a distance of r from the centre of one 

molecule is 
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where qqq  .  

The following relation is valid 
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In this case, one can limit oneself to first-order quantities of l/r, since l << r. In 

this case, the formula (3.1.4) takes the form 
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Now we calculate the force with which the electric field created by the first 

molecule acts on the second molecule 
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Using the relation l′<< r, we can assume that   rlrl /31/1
3 

  . In this 

case, the formula can be written as 
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The polarizability of molecules depends on the electric field strength. 

Therefore, in formula (3.1.8) it must be assumed that l′ ~ E ~ r–3. Then the force can 

be expressed by the relation 

  7~ rrF .                                             (3.1.9) 

Consequently, the forces of van der Waals very quickly decrease with distance. It 

follows from formula (3.1.9), that the potential energy varies in proportion to the 

sixth power of the distance between the molecules 

  6~ rrWp .                                      (3.1.10).  

Van der Waals forces arise in the complete absence of charge exchange. 

Therefore, in comparison with the forces of ionic bonding, they represent another 

extreme case. The covalent bond arises as a result of a partial charge exchange and is 

an intermediate case between the ionic bond and the van der Waals forces. 

Covalent bonding is enhanced in metals or metal crystals. Such amplification 

leads to the fact that the electron density between the nodes of the crystal lattice 

reaches appreciable values. Electrons that bond between ions practically lose all bond 

with ions and can be considered as common electrons for the entire crystal. An 

electron gas is formed in the crystal. The resulting bond is called a metal bond.  

The considered types of bonds do not exhaust the entire variety of bonds 

existing in crystals. Substances with a rather complex crystalline structure often 

cannot be attributed to any specific types of bonds.  

An important role in the formation of bonds in solids is played by the hydrogen 

bond. By its physical nature, it is not a separate type of connection. But according to 

its role, it is advisable to separate it into a separate category. This is due to the 

structural features of the hydrogen atom. First, a proton ion is a hydrogen atom whose 

size is approximately 105 times smaller than other ions. Therefore, the entire ion can 

practically be considered a material point. Secondly, the electron in the hydrogen 

atom is very strongly attached to the proton, which serves as the nucleus of the 

hydrogen atom. The ionization potential of atomic hydrogen is approximately 

13.5 eV. This value is several times greater than the ionization potential for other 
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atoms. The essence of the hydrogen bond is that the electron and proton move in such 

a way that bonds arise in the crystal due to their motion, called hydrogen bonds. It is 

important when hydrogen bonds arise that the first filled electron shell in the 

Coulomb field is a shell with two electrons. Therefore, a hydrogen atom can form 

only one covalent bond, which is very important for characterizing the structure of 

the corresponding covalent crystals.  

The potential energy of attraction between the molecules is negative. If the sum 

of the kinetic and potential energies of the considered system of molecules is 

positive, then the molecules, left to themselves, tend to disperse over an infinitely 

large distance. This corresponds to the tendency of the gas to expand. 

When a gas is compressed, its density increases, and the average distance 

between molecules decreases. This leads to a decrease in potential energy. 

If the average kinetic energy of the molecules is not too large, then there comes 

a moment when the sum of the kinetic and potential energies of the system becomes 

negative. Such a system of molecules can no longer spontaneously disperse in a large 

volume. In this case, the situation of the bound state is realized. This state of the 

molecules is either liquid or solid.  

 

3.2. Two-Phase States 

 

Consider the experience of studying the isotherm of real gas. Gas compression 

occurs at a temperature T. When gas is compressed to a volume V1, its pressure will 

increase to value P. With a further decrease in the volume of gas, part of it turns into 

liquid, but the pressure remains equal to P. Therefore, in this section of the isotherm 

in the vessel there are simultaneously gas and liquid, separated by a boundary, which 

is the surface of the liquid.  

The physically homogeneous parts into which the system has broken up are 

called phases. Thus, the system in this section of the isotherm consists of liquid and 

gaseous phases. At a certain volume V2, the gas is completely converted into liquid 

and only the liquid phase is present in the system. A further decrease in volume leads 

to compression of only the liquid. This liquid has a very high resistance to 

compression.  

An increase in temperature leads to a decrease in the portion of the isotherm 

corresponding to a two-phase system. At a critical temperature, this section of the 

isotherm becomes a point.  

The difference between the liquid and gas disappears at this point, in other 

words, the liquid and gas have the same properties. This state is called a critical state, 

and Tc, Pc, Vc is called the critical temperature, critical pressure, and critical 

volume, respectively.  

Gas cannot be converted to liquid at any pressure if T > Tc. The isotherm Tc at 

a pressure of P > Pc separates the gaseous and liquid state of the substance so that at 

the points of this isotherm the phase properties are the same.  
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The transition from the gaseous state to the liquid state can be accomplished 

both through the region of two-phase states and bypassing this region. At 

neighbouring points on different sides of the isotherm, the properties of the system 

are different. On one side of the isotherm, the substance is a gas, and strives to 

expand. On the other hand, the isothermal substance is a liquid and seeks to maintain 

its volume.  

In a two-phase system, liquid and vapour are in dynamic equilibrium and at a 

given temperature have well-defined values of density and pressure. Pressure is 

called saturated vapour pressure at temperature. Saturated vapour pressure increases 

with increasing temperature. Steam is called saturated because it cannot be 

“condensed” at the same temperature. Part of the saturated vapour is converted to 

liquid upon attempt to compact.  

At a temperature of T, the entire volume V1 is filled with saturated steam, 

since with the slightest decrease in this volume, part of the vapour passes into the 

liquid. Therefore, the density of saturated vapour at this temperature is equal 

1/Vm . At a temperature of T′, the density of saturated steam is 

  



1V

m
.                                            (3.2.1) 

Near the vapour-liquid interface at a point on the liquid side, the entire volume 

V2 is filled with liquid. Therefore, the density of the liquid at a temperature of T is 

2V

m
l  .                                                   (3.2.2) 

It is obvious that the density of a liquid at a temperature of T is higher than the 

density of saturated vapours at the same temperature. The density of the liquid at a 

temperature of T′ is ll Vm   2/ . This means that with increasing temperature, 

the density of the liquid decreases.  

The difference in the liquid and gas phases density decreases as the 

temperature approaches the critical temperature. At the critical point, the density of 

the liquid phase is equal to the density of the gaseous phase 

c
c

V

m
 .                                               (3.2.3) 

Consider the state of a two-phase system, characterized by some intermediate 

point. Denote the total volume occupied by the system by symbol V. The volumes 

and densities of the liquid and gaseous phases are Vl, Vυ, ρl, ρυ. We write down the 

law of conservation of matter 

mVV ll   .                                      (3.2.4) 
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Using the relation  Vl, + Vυ = V, we obtain 

    VmV ll  .                                 (3.2.5) 

Hence, 
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where 21 /,/ VmVm l   .  

We transform the formula (3.2.6) taking into account relations ρlVl = ml, 

ρlV2 = m. In this case, the mass of the liquid phase can be expressed as follows 
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A similar expression can be obtained for the mass of the gaseous phase 
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We express the mass ratio of the liquid and gaseous phases from formulas 

(3.2.7) and (3.2.8) 
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Formula (3.2.9) is called the lever arm rule.  

Isotherms of real matter cannot always be depicted in the drawing. For 

example, the density of water and its saturated steam at 50°С are equal, respectively, 

to 988.0 kg/m3 and 8.310-2 kg/m3. Saturated vapour pressure is 122103 Pa. This 

means that the ratio of abscissa V1/V2 should be 104. We use the fact that the critical 

pressure of water is Pc = 220.53105 Pa. In this case, the ratio of ordinates Pc/P1 in 

the drawing should be approximately 2000. It is clear that such a curve cannot be 

represented on a linear scale.  

The isotherm has a horizontal direction at the critical point, i.e. a relation of 

  0/  TVP  holds. Therefore, pressure (density) is independent of volume. This 

means that if in a certain region the particle density increases, then there are no 

pressure forces that would try to reduce this density, and vice versa. As a result of 

this, in a critical state, density fluctuations become very large. This leads to the 

appearance of a phenomenon called critical opalescence. The essence of the 

phenomenon is that density fluctuations lead to significant fluctuations in the 

refractive index and absorption of the medium. This leads to the fact that light is 

strongly scattered and absorbed in the medium.  
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The phases in a two-phase system are in equilibrium at the same temperature. 

The increase in volume leads to the fact that some of the liquid turns into steam. In 

order to maintain a constant temperature, it is necessary to transfer a certain amount 

of heat to the system.  

Thus, in order to make the transition from the liquid phase to the gaseous 

system, heat must be obtained without changing the temperature. This heat is 

expended in changing the phase state of a substance and is called the heat of phase 

transformation or the latent heat of transition. Phase transitions that occur with the 

absorption or release of latent heat of transition are called phase transitions of the 

first kind.  

Saturated vapour pressure increases with temperature. Define a quantitative 

relationship between these phenomena. 

We consider an infinitesimal reversible Carnot cycle, in which the isotherms 

are the states of a two-phase system at temperatures T and T – dT. The work 

performed in this cycle is 

 dPVVA 21  .                                    (3.2.10) 

The efficiency of this Carnot cycle is 
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where L is the latent heat of transition of a given mass of substance.  

On the other hand, the efficiency of the Carnot cycle is 
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Equating the right-hand sides of equations (3.2.11) and (3.2.12), we get 
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Equation (3.2.13) is called the Clapeyron – Clausius equation. This equation 

relates the pressure at which a two-phase system is in equilibrium to temperature. If 

the latent heat of transition L and the dependence of the volumes of the liquid Vl and 

gaseous Vυ phases on the temperature are known, then the solution of the differential 

equation (3.2.13) allows us to find the dependence of pressure on temperature.  

 

3.3. Van der Waals Equation 

 

 Experimental studies of gases carried out in a wide range of pressures that the 

product of pressure on the volume is not constant at T = const, as it should be 
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according to the equation of state of an ideal gas. Product PV changes with pressure 

as if at low pressures the gas is more readily compressed than an ideal gas. At high 

pressures, the gas resists compression more than an ideal gas. In other words, at low 

gas densities, additional attractive forces act in it, and at high densities in the gas, 

additional repulsive forces act.  

These factors can be described using the concept of compressibility. 

Isothermal compressibility κ is the coefficient of proportionality between the relative 

change in volume ΔV/V  and the change in pressure ΔP at T = const 
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The state of an ideal gas is characterized by the ratio 
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Therefore, κ = 1/P. The experiment shows that, at low pressure, the 

compressibility of real gas is greater than ideal. 

The compressibility of liquids is very small, since the molecules in the liquid 

are packed densely enough. Therefore, very high pressures are required to slightly 

change the volume of liquid. For example, the compressibility of water and gasoline 

is 0.4710–9 Pa–1 and 0.8210–9 Pa–1, respectively. The compressibility of liquids is 

thousands of times less than the compressibility of gases. 

The equation of state depends on the law of interaction between the molecules. 

Therefore, each sort of molecule has its own equation of state.  

The exact equation of state can be represented as a virial equation of state  

    ...2
11   VTAVTARTPV ,                      (3.3.4)  

where Ai(T) are virial coefficients. 

This equation is an infinite series in inverse powers of the molar volume and 

requires knowledge of an infinite number of virial coefficients. In this sense, it has 

only theoretical significance. In the study of specific substances, a very large number 

of different approximate equations of state were used. Among the approximate 

equations, the van der Waals equation is most widely known.  

Consider the features of this equation. The equation of state PV = (m/μ)RT of 

an ideal gas does not take into account the presence of attractive forces between 

molecules when the molecules are removed from each other, and also does not take 
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into account the presence of repulsive forces when the molecules are close to each 

other. 

The action of repulsion is reduced to the fact that the molecule does not allow 

penetration of other molecules into the volume occupied by it. Therefore, repulsive 

forces are characterized by an effective volume of molecules. We denote the total 

effective volume of molecules proportional to the mass of the gas by mb′. Then, 

taking into account the final volume of molecules reduces to the fact that in the 

equation of state of an ideal gas, not all of the volume, but only part of it, is 

accessible for change V – mb′.  
The presence of attractive forces leads to the appearance of additional internal 

pressure on the gas. The force with which each molecule is attracted by other 

molecules is proportional to the concentration of gas molecules n0. The number of 

these molecules is also proportional to n0. Therefore, the additional internal pressure 

on the gas due to the attractive forces is proportional to 
2
0n , i.e. inversely 

proportional to the square of the specific volume m2/μ2. The presence of additional 

internal pressure on the gas leads to a decrease in the external pressure, which must 

be applied to the gas to keep it in a given volume.  

Therefore, taking into account the two corrections considered, the equation of 

state of an ideal gas is modified into the van der Waals equation 
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where a′ and b′ are constant values that have different meanings for different gases. 

These quantities are called van der Waals constants.  

Instead of the constant values a′ and b′, the values a = a′μ2 and b = b′μ2  are 

often used. In this case, equation (3.3.5) can be rewritten in the form 
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Equation (3.3.6) is written taking into account the notation Vμ = V/ν, where ν 

is the number of moles.  

For the analysis of isotherms, it is more convenient to present equation (3.3.6) 

in a different form 
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Equation (3.3.7) is an equation of the third degree with respect to Vμ. Consider 

the case of constant temperature. Then, according to the properties of polynomials of 

the third degree, the gas volume at different pressure values will have either one or 

three real values.  
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This means that the isotherm of the van der Waals equation in plane (P,V) is 

intersected by a straight line P = const either at one point or at three points. In this 

case, the gas states are not absolutely stable. With a small external impact on the 

system, a quick transition to the nearest stable state occurs. Such states are called 

metastable states.  

The van der Waals equation at temperature T > Tc always has only one real 

root. The van der Waals equation at temperature T < Tc has three real roots in a 

certain pressure range. Obviously, with increasing temperature, the values of these 

three material roots approach each other and, at a critical temperature Tc, all three 

roots become equal. Therefore, for a critical state, equation (3.3.7) has the form 

  033 32233
 cccc VVVVVVVV .                  (3.3.8) 

A comparison of equations (3.3.7) and (3.3.8) leads to the statement that the 

following relation is valid 
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Equalities (3.3.9) are a system of three equations with three unknown 

quantities Vc, Pc, Tc. The solution to this system has the form 
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Thus, there are three equations for the two van der Waals constants. Solving 

equations (3.3.10) with respect to a, b, and R, we obtain 
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Relations (3.3.11) show that for each real gas it is necessary to calculate its 

individual gas constant R, which differs from the molar gas constant kNA.  

An individual gas constant is less than a molar gas constant. 

Since the gas constant is proportional to the number of molecules in the mole, 

it can be argued that in the critical state there is a decrease in the number of structural 

units forming the gas constant. Consequently, real gas molecules are combined into 

complexes. When moving away from the critical state, these complexes decompose, 

and the individual gas constant becomes equal to the molar gas constant.  
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The van der Waals equation is conveniently presented in a dimensionless form. 

We introduce the following notation  
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The van der Waals equation, taking into account dimensionless parameters Vr, 

Pr, and Tr, can be written in the following form 
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The equation of state written in the form (3.3.13) is the same for all substances. 

 

3.4. Joule-Thomson Effect 

 

Gas does work when expanded. If the gas is isolated, the source of work is 

internal energy. If all internal energy were reduced to the kinetic energy of particles, 

then the gas temperature would have to decrease. If this expansion of gas were 

carried out without performing work, the gas temperature would not change.  

The internal energy of a real gas includes the potential energy of interaction of 

molecules. In fact, the molecules are in rapid motion and we can talk about some 

average distance and average potential energy. The average distance depends on 

density and temperature. An increase in density leads to a decrease in average 

distance. The kinetic energy of molecules increases with increasing temperature. 

Consequently, molecules in collisions approach each other at a shorter distance.  

The above considerations indicate that the expansion of a real gas without heat 

transfer should be accompanied by a change in its temperature. With a small increase 

in volume and, consequently, with a small decrease in pressure, the gas temperature 

should increase. If the density and temperature of the gas are such that the average 

distance between the molecules is greater than a certain characteristic value r0, then 

with a small increase in volume and, therefore, with a small decrease in pressure, the 

gas temperature decreases. It should be noted that for distances r > r0 between the 

molecules, attractive forces act, and for distances r < r0 between the molecules, 

repulsive forces act.  

The change in temperature of a real gas described here with a very small 

adiabatic change in its volume and pressure is called the Joule-Thomson differential 

effect. The effect is named after James Prescott Joule (24.12.1818 – 11.10.1889) and 

Thomson. With a significant change in pressure (or volume), it is necessary to 

summarize small changes in temperature. This cumulative effect is called the Joule-

Thomson integral effect. The Joule-Thomson integral effect may consist in 

increasing the gas temperature when the contribution of differential effects with 

ΔT > 0 exceeds the contribution of differential effects with ΔT < 0. The opposite 



 76 

relation for these contributions leads to the fact that the Joule-Thomson integral effect 

consists in a decrease in temperature.  

We calculate the differential Joule-Thomson effect. Consider gases whose 

volumes are V1 and V2. There is a partition made of a material with low thermal 

conductivity between the gases. Direct heat exchange between gases is absent. The 

two-gas system is thermally insulated.  

A certain amount of gas with a volume of ΔV1 and an internal energy of ΔU1 

is located on one side of the partition. After passing through the partition, the gas 

began to occupy volume ΔV2 and have internal energy ΔU2. We write down the law 

of conservation of energy for this process 

222111 VPUVPU  .                      (3.4.1) 

The values located on the left and right side of equation (3.4.1) are the enthalpy 

of the amount of gas under consideration. Therefore, equality (3.4.1) means that the 

Joule-Thomson effect occurs with constant enthalpy. For a certain mass of gas, 

equality (3.4.1) can be written in the form 

const PVUH .                            (3.4.2) 

We choose T and P as independent variables. In this case, from equation 

(3.4.2) we can obtain 
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We use the relations for the functional dependences between the enthalpy and 

heat capacity at constant pressure 
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Therefore, using formulas (3.4.3) and (3.4.4), we can obtain 
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This formula describes the differential Joule-Thomson effect.  

For an ideal gas   TVPRTV P ///   and therefore   0/  HPT , 

that is, the Joule-Thomson effect is absent.  

Consider the Joule-Thomson integral effect. Assume that the gas pressures P1 

and P2 on opposite sides of the septum differ by a final value. In this case, the  

Joule-Thomson effect can be represented as a sequence of quasistatic Joule-Thomson 

processes, in each of which the pressure changes to an infinitely small value dP. For 

this sequence of processes, we can write 
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The sequence of Joule-Thomson quasistatic processes transfers the system 

from the same initial state to the same final state. Therefore, formula (3.4.6) describes 

the complete change in temperature in a real process. Formula (3.4.6) is a 

mathematical description of the integral Joule-Thomson effect.  

Consider the Joule-Thomson effect in a van der Waals gas. The calculation of 

the derivative  PTV  /  is generally complicated, since the van der Waals 

equation is an equation of the third degree with respect to V. Therefore, we consider 

only the case of a sufficiently rarefied van der Waals gas. We represent the van der 

Waals equation in virial form 
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The case of a rarefied gas corresponds to the presence in equation (3.4.7) of 

terms linear with respect to a and b. Under these conditions, equation (3.4.7) takes 

the form 
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It follows from equation (3.4.8) that 
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Therefore, the formula (3.4.5) for the differential Joule – Thomson effect takes 

the form 
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An analysis of formula (3.4.10) leads to the following conclusions. At a 

sufficiently low temperature, a ratio of   0/  HPT  is satisfied. Consequently, 

the gas cools during expansion. At a sufficiently high temperature, a ratio of 

  0/  HPT  is satisfied; the gas is heated during expansion. This behaviour of 

the gas is in complete agreement with the physical nature of the Joule-Thomson 

effect.  

The temperature at which relation   0/  HPT  is satisfied, i.e. there is a 

change in sign of the Joule-Thomson effect, called the inversion temperature  
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The inversion temperature of a sufficiently rarefied gas is 2a/(Rb). With 

increasing gas density, the inversion temperature decreases. For most gases, the 

inversion temperature is much higher than room temperature, so they are cooled in 

the Joule – Thomson process.  

Such gases include, for example, oxygen and nitrogen. For some other gases, 

such as hydrogen and helium, the inversion temperature lies well below room 

temperature, which is why these gases are heated during the Joule – Thomson 

process. 

The conversion of gases to a liquid state is often associated with great technical 

difficulties. If the gas temperature is below the critical temperature, then it can be 

converted into a liquid state by simple compression. However, the critical 

temperature of many gases is very low. For example, the critical temperatures of 

helium, hydrogen, nitrogen, and oxygen are 5.3 K, 33 K, 126.1 K, and 154.4 K, 

respectively. Reaching such low temperatures is not an easy problem. The 

temperature reduction is achieved by cooling the gas in the Joule-Thomson process 

and adiabatic expansion. 

 

3.5. Surface Tension 

 

A liquid state arises when the potential energy of attraction of molecules 

exceeds in absolute value their kinetic energy. The forces of attraction between the 

molecules in the liquid are large in magnitude and ensure the retention of molecules 

in the volume of the liquid. Thus, a surface forms on the liquid that limits its volume. 

The surface limiting this volume depends on the shape. For a given volume, the ball 

has a minimal surface. 

Particles in a thin layer near the surface of the liquid are acted upon by other 

molecules of the liquid, forces whose resultant is directed inside the liquid, normal to 

its surface. As the surface of the liquid increases, a certain number of molecules from 

the volume of the liquid must be lifted into the surface layer. In this case, it is 

necessary to do the work 

For the case when the surface formation process is isothermal, the potential 

surface energy is equal with the opposite sign of the energy spent on the formation of 

this surface. 

On the other hand, in isothermal processes, the role of potential energy is 

played by free energy F, for which the following relation holds true 

dAdF  ,                                               (3.5.1) 

where dA is the work associated with the emergence of free energy dF. 
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As a result of the surface uniformity property, it is obvious that free surface 

energy is proportional to the surface area. Therefore, taking into account formula 

(3.5.1), we can write 

SF  ,                                                  (3.5.2) 

where σ is the specific free energy density of surface. 

The mechanical system seeks to reach the state with the least potential energy. 

The state with the least potential energy is stable. The thermodynamic system strives 

to achieve the state with the least free energy. Therefore, the surface of the liquid 

tends to contract. Due to this, forces called surface tension forces act along the 

surface of the liquid.  

In this regard, the liquid is similar to a thin rubber film stretched isotropically 

in all directions in the plane of the surface. 

The presence of surface tension is very effectively demonstrated with the help 

of soap films formed on a wire frame removed from a soap solution. In order to 

increase the area of the soap film, it is necessary to apply force to the wire f. When 

the wire section is shifted by dx, work equal to dA = fdx is performed. The area of 

the soap film in this case changes by a value of dS = ldx, where l is the length of the 

portion of wire to which the force is applied. The change in free energy is 

l

fdS
fdxdSdF  2 ,                         (3.5.3) 

where factor 2 takes into account that the soap film has two surfaces; the value  

– f/(2l) is numerically equal to the force related to the perimeter portion of each of 

the film surfaces.  

This force is numerically equal to the surface free energy density, since 1 J/m2 

= 1 N/m. Therefore, the value of σ is called surface tension.  

Surface tension depends on the properties of the fluid and varies widely. In 

most liquids, the surface tension at a temperature of 20 °C is on the order of 10–2 to 

10–1 N/m. For example, in ether, acetone, benzene, glycerol and water, it is equal to 

1.7110–2; 2.3310–2; 2.8910–2; 6.5710–2; 7.2710–2 N/m, respectively.  

The specific gravity of the surface’s free energy, characterized by a value of σ, 

is localized in a small surface layer of the liquid. Therefore, surface tension forces act 

only in a thin surface layer. In this regard, a thin surface layer acts like a rubber 

sheath, which surrounds a volume of liquid. The only difference with the rubber 

sheath is that it has a constant tension, regardless of how the surface of the liquid 

changes as a result of the change in the shape of the volume occupied by this liquid. 

In addition to the tensile forces on the molecules of the surface layer, other 

forces also act that prevent these molecules from moving inside the liquid. The 

resultant of these forces and provides the occurrence of surface tension.  

Surface tension depends on the properties of the substance with which the 

surface of the liquid is in contact. 
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The value of σ can be interpreted as the density of free energy. In this regard, 

the substance at the surface of the liquid also acts on the molecules of the surface 

layer of the liquid and, therefore, changes the forces that draw them into the liquid. 

This means that the surface tension is changing. Therefore, when the surface tension 

is studied, it is necessary to indicate not only the liquid that is meant, but also the 

substance with which the surface of the liquid is in contact. Therefore, the symbol σ, 

denoting surface tension, must be provided with two indices that indicate two 

substances adjacent to each other.  

The surface tension on the interface between two liquids should be less than on 

the free surface. For example, at the water-ether interface, the surface tension is 

0.0122 N/m.  

At the interface between a solid and a liquid, surface tension also decreases. 

For example, the value of σ on the free surface of mercury is 0.465 N/m, and on the 

interface between mercury and water, the surface tension is 0.427 N/m. Values shown 

are for room temperature. 

If a drop of the third liquid is placed on the interface of two liquids, then two 

results are possible, depending on the ratio of surface tension. Let symbol dl denote 

the length element directed along the line of contact of the three media 1, 2, 3. The 

surface tension forces acting on this element are σ12dl, σ23dl, σ13dl. Consider the 

case when σ13 < (σ23 + σ12). Then the equilibrium condition is the vanishing of the 

resultant of all the forces acting on element dl 

21212313 coscos   , 

212123 sinsin   .                                     (3.5.4) 

The system of equations (3.5.4) makes it possible to determine angles θ1 and 

θ2. These angles are formed by the tangent plane to the surface of the droplet in the 

region of the interface and the plane of the interface. Angles θ1 and θ2  are called 

edge angles. 

Consider the case when σ13 > (σ23 + σ12). Equilibrium is not possible in this 

case, and a drop of the third liquid spreads over the entire interface between the first 

two liquids. 

Consider the equilibrium conditions at the liquid – solid interface. In this case, 

there is only one contact angle θ. The equilibrium conditions can be written in the 

following form 

122313 cos   , 

121323 cos   .                                     (3.5.5) 

If condition σ13 > (σ23 + σ12) is satisfied, then the liquid spreads over the 

surface of the solid with a molecular layer. In this case, the liquid wets the boundary 

of the solid.  
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Swimming bodies in a liquid is accompanied by the effects of wetting or not 

wetting. Because of this, additional forces arise that either increase the lifting force or 

reduce it.  

The presence of surface tension forces leads to a curvature of the surface of the 

liquid. In this case, pressure arises from the surface layer on the underlying layers. 

For example, the overpressure for a spherical soap bubble is 

r
P

4
 ,                                                (3.5.6) 

where r is the radius of the soap bubble. 

Formula (3.5.6) takes into account that overpressure is created by two curved 

surfaces of the soap bubble (internal and external). One surface creates pressure 

P′ = P/2. 

In the general case, the surface curvature is determined by the two principal 

radii of curvature r1 and r2. In this case, the overpressure is 
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Equation (3.5.7) is called the Laplace formula.  

When interacting with the vessel wall, surface tension forces tend to either 

raise the liquid level or lower this level. The surface of the liquid rises if the walls of 

the vessel are wetted by the liquid, and decreases if the walls of the vessel are not 

wetted by the liquid.  

If the liquid wets the walls of the vessel in the form of a tube, a column with a 

height of h is formed in the vessel. The pressure of the liquid column is compensated 

by the pressure created by the surface tension of the curved surface. In this case, we 

can write the following relation 

rR
gh




cos22
 ,                                  (3.5.8) 

where ρ is the density of the liquid; R is the radius of curvature of the liquid surface; 

r is the radius of the tube (r = Rcosθ).  
The phenomena caused by the interaction of the fluid with the walls of the 

tubes by means of surface tension forces are called capillary phenomena. The 

phenomenon of capillarity was discovered and studied by Leonardo da Vinci 

(14.04.1452 – 2.05.1519). 

Surface energy strives to reach its minimum value. This is possible due to a 

decrease in both surface area and surface tension σ. Consider the case of adding the 

first fluid to the second fluid with lower surface tension. In this case, the second 

liquid will be adsorbed mainly in the surface layer, as a result of which the surface 

tension will decrease. Such a substance is called a surfactant. Examples of surfactants 

include soap (reduces surface tension) and sugar solution (increases surface tension).  
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3.6. Evaporation and Boiling 

 

In the surface layer and near the surface of the liquid, forces act that ensure the 

existence of the surface and prevent the molecules from leaving the volume of the 

liquid. Due to thermal motion, some of the molecules have sufficiently high speeds to 

overcome the forces that hold the molecules in the liquid and leave the liquid. This 

phenomenon is called evaporation. Evaporation of a liquid is observed at any 

temperature, but the evaporation rate increases with increasing temperature.  

Molecules that have left the liquid form steam. Steam molecules that fall into 

the area near the surface of the liquid are drawn into the liquid by attractive forces. 

Thus, the evaporation rate decreases. 

With a further increase in vapour density, a situation is achieved when the 

number of molecules leaving the liquid for some time is equal to the number of 

molecules returning to the liquid at the same time. A state of dynamic equilibrium 

sets in. Vapour in a state of dynamic equilibrium with a liquid is called saturated 

vapour.  

The density and pressure of saturated steam increase with increasing 

temperature. As the density of saturated vapours increases, the surface tension of the 

liquid decreases, since the forces directed inside the liquid decrease due to the growth 

of oppositely directed forces from the side of saturated vapour. It follows from this 

that the latent heat of vaporization decreases with increasing temperature. At a critical 

temperature, the density of saturated vapours becomes equal to the density of the 

liquid, and the difference between them disappears.  

Vapour is not a gas in the strict sense of the word. Gas is the state of matter at a 

given temperature and pressure. Vapour is not an aggregate state of a substance, 

because the aggregate state of a substance at a given temperature and pressure is a 

liquid state. In this regard, the behaviour of vapour differs from the behaviour of gas.  

The ideal gas pressure is exactly inversely proportional to the volume. The 

pressure of a real gas is only approximately inversely proportional to the volume. 

Vapour pressure close to saturation varies slightly with volume. Saturated vapour 

pressure does not change with volume. Gas laws can only be applied to unsaturated 

vapours in a rough approximation.  

Near a curved surface, the pressure of saturated vapours differs from their 

pressure near a flat surface. The conditions of dynamic equilibrium near a curved 

surface are identical in physical content to those near a flat surface. The physical 

content in this case is that the intensities of the transition of molecules from liquid to 

gas and vice versa are the same. However, in the case of a curved surface, the 

intensity of the exchange of molecules depends on the curvature of the surface.  

Taking this dependence into account allows us to conclude that the saturated 

vapour pressure in the case of a concave surface of the liquid is less than in the case 

of a flat surface. In the case of a convex surface, the pressure of saturated vapours 

increases compared to the pressure above a flat surface. 

We define a quantitative criterion for the change in the pressure ΔP of 

saturated vapours arising due to the curvature of the surface of the liquid. Consider an 

experiment in which a liquid and a capillary tube partially lowered into this liquid are 
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in a closed vessel. Saturated steam is located in the space above the liquid. The height 

h of the liquid column in the capillary and the radius R of curvature of the liquid 

surface in the capillary tube depend on the surface tension, the density of the liquid, 

and the characteristics of the saturated vapour. The pressure P0 at the liquid surface 

level is the same both inside the capillary and outside the capillary 

ghPP h 0 ,                                           (3.6.1) 
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where Ph is the vapour pressure at a height of h; ρl and ρυ is the density of the liquid 

and saturated vapour. 

Equality (3.6.1) expresses the change in pressure between levels 0 and h in a 

pair, and equality (3.6.2) expresses the pressure difference between the same levels in 

a liquid. Term 2σ/R takes into account the pressure difference on opposite sides of 

the curved surface of the liquid. Equating the right-hand sides of equations (3.6.1) 

and (3.6.2), we obtain 
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The joint solution of equations (3.6.1) and (3.6.3) allows us to write the 

expression for the pressure difference 
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Equation (3.6.4) is called the Thomson’s formula. In the formula (3.6.1) it is 

assumed that the density of saturated vapours does not change with a change in 

height. This ratio is satisfied in most real cases. If necessary, you can take into 

account the effect of changing the density of saturated vapours with a change in 

height using the barometric formula. 

When, when heating a liquid, a temperature is reached at which the saturated 

vapour pressure is equal to the external pressure, equilibrium is established between 

the liquid and its saturated vapour. When fluid is supplied with additional heat, the 

corresponding mass of liquid is immediately converted to steam. The lowest pressure 

in the liquid theoretically falls on its upper layers. Consequently, the conversion to 

steam should occur in the upper layers. But, in reality, the pressure difference 

between the different layers of the liquid is negligible compared to the pressure itself, 

since the atmospheric pressure of 105 Pa corresponds approximately to the pressure 

of a column of water 10 m high. These circumstances lead to the fact that the 

conversion of liquid into steam occurs throughout the volume of the liquid. This 

process is called boiling.  
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The boiling point is the temperature at which the saturated vapour pressure 

becomes equal to the external pressure. With increasing pressure, the boiling point 

increases. A decrease in pressure leads to a decrease in the boiling point. 

Water in a hermetically sealed vessel can be heated to a temperature well 

above 100 °C, without the water boiling. This technique is used, for example, in 

everyday life to accelerate the cooking of products in a hermetically sealed vessel. On 

the other hand, by sufficiently lowering the pressure above the surface of the water, 

for example, by pumping air from the vessel in which the liquid is located, boiling of 

the liquid at room temperature can be caused.  

If the liquid is devoid of impurities and does not contain a vapour bubble, then 

upon reaching the boiling point vapour bubbles tend to form in it. Inside the bubble, 

steam forms which is saturated with respect to the flat surface of the liquid. The same 

vapour is oversaturated with respect to the concave surface of the liquid to which this 

bubble is limited. Therefore, the vapour of the bubble immediately condenses into 

liquid and the vapour disappears. 

Boiling will begin if some substance is introduced into the liquid that makes it 

possible to form vapour bubbles having a sufficiently large radius from the very 

beginning so that the vapour in the bubble is not too supersaturated and the pressure 

from the side of the bubble walls is not too great.  

Such a substance may be, for example, chalk powder. The individual powder 

particles are those “nuclei” around which vapour bubbles form. Therefore, when a 

pinch of chalk is thrown into superheated water, a boiling boil resembles an 

explosion.  

We estimate the maximum allowable overheating of the liquid. Saturated 

vapour pressure can be estimated using formula (3.6.4). We take into account that the 

density of saturated vapours at the boiling point is much lower than the density of the 

liquid. In this case, formula (3.6.4) can be rewritten as  
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 .                                                (3.6.5) 

Permissible overheating of the liquid can be found by the Clapeyron-Clausius 

formula, taking into account the ratio between the volumes of the liquid V2 and 

gaseous V1 phases (V2 << V1) 
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where L is the latent heat of transition of mass m of liquid. 

Substituting tabular values of quantities into this formula, we find that 

T  0.5 K for R = 0.510–7 m.  
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Similarly, we can estimate the increase in the boiling point of a liquid with a 

change in depth by h 
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It follows that T/h  0.03 K/cm. Therefore, in a teapot at a depth of 10 cm 

from the surface of the water, the boiling point is greater by about 0.3 K than on the 

surface. 

If a charged particle flies through an overheated liquid, then it in its path 

ionizes the atoms of the liquid and imparts some energy to the liquid. This energy is 

converted into heat and causes the liquid to boil, i.e. the formation of bubbles. In 

other words, the superheated liquid boils along the trajectory of the charged particle, 

due to the scratch, the trajectory is clearly visible and can be photographed. In 

experimental studies of elementary particles, liquid hydrogen is usually used. Devices 

that use the stated principle are called bubble chambers.  

A charged particle in its path in a supercooled vapor ionizes the vapor 

molecules. Ions become condensation centers around which droplets of liquid form. 

Due to this, fog forms along the particle’s trajectory, and the trajectory becomes 

visible. This allows the study of charged particles. Devices that use the stated 

principle in their work are called cloud chambers.  

 

3.7. Chemical Potential. Phase Balance 

 

There are systems consisting not only of two components and two phases, but 

also of a large number of components, and their composition varies depending on 

temperature, pressure and other thermodynamic parameters. If the system has several 

components, then the internal energy of the system depends on the number ni of 

particles of each of the components.  

It is convenient to take volume V and entropy S as independent components on 

which internal energy depends  
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where nj ≠ ni.  

Comparing formula (3.7.2) and formula dU = TdS – PdV, we can write 
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Therefore, the expression (3.7.2) takes the form 
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Similarly, taking into account the variable number of particles, the remaining 

thermodynamic potentials can be modified. Consider the Gibbs potential. The Gibbs 

potential is conveniently regarded as a potential that depends on the pressure P, 

temperature T, and number of particles of various components of the system 
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taking into account the formulas for thermodynamic potentials T, S, V, and P takes 

the form 
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.                      (3.7.8) 

Taking into account formulas (3.7.4) and (3.7.8), we can write 
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
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
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






 ,

,,

 .                              (3.7.9) 

Therefore, the formula (3.7.8) finally takes the form 


i

iidnVdPSdTdG  .                      (3.7.10) 

Performing similar transformations for enthalpy and free energy, we obtain 


i

iidnVdPTdSdH  ,                         (3.7.11) 


i

iidnPdVSdTdF  .                       (3.7.12) 
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The following notation is used in formulas (3.7.11) and (3.7.12) 
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 .           (3.7.13) 

The value of μ is called the chemical potential. Formulas (3.7.5), (3.7.9), and 

(3.7.13) contain a representation of the chemical potential for various variables, 

which are taken as independent values.  

An analysis of formula dG = – SdT + VdP shows that the equilibrium 

condition at a constant pressure and temperature should be equal 

  0, PTdG .                                             (3.7.14) 

A system can consist of many components, but the number of phases in most 

practically important cases is two or three. Suppose for definiteness that there are two 

phases 1 and 2 and two components a and b in the system. The Gibbs function of a 

complete system is equal to the sum of the Gibbs functions of its phases. The phases 

will be considered homogeneous. For a complete system, from the condition of 

conservation of the total number of particles, we get 

constconst, 2121  bbaa nnnn .             (3.7.15) 

Then we can write 

0,0 2121  bbaa dndndndn .                (3.7.16) 

For the Gibbs function of the first and second phases, we can obtain the 

following relation 

11111 bbaa dndnVdPSdTdG   , 

22222 bbaa dndnVdPSdTdG   .                 (3.7.17) 

For the equilibrium state at constant values of T and P it is necessary to fulfil 

the following condition 

      0
,2,1,  PTPTPT dGdGdG .                   (3.7.18) 

Solving equations (3.7.16), (3.7.17), and (3.7.18) together, we obtain 

    0121121  bbbaaa dndn  .                 (3.7.19) 

Hence, in view of the independence of na and nb, it follows that 

2121 , bbaa   .                               (3.7.20) 
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Assume that μij is the chemical potential of the component with symbol i, 
which is present in the system in phase with symbol j. Then, a generalization of 

formula (3.7.20) for a large number of components is equalities 

...,2,1,...21  iijii                     (3.7.21) 

Therefore, the chemical potential of each component of the system has the 

same value for all phases under equilibrium at constant pressure and temperature. 

Consider a system consisting of several components. There is a simple 

connection between the number of f degrees of freedom of a thermodynamic system, 

the number of r phases coexisting in equilibrium, and the number of n components of 

the system 

2,2  nrrnf .                           (3.7.22) 

Equation (3.7.22) is called the Gibbs phase rule.  

Let us consider particular cases of the Gibbs phase rule. 

1.  One component system (n = 1). For such a system, you can write 

3,3  rrf .                                    (3.7.23) 

For r = 1 (single-phase state), we have f = 2. The free parameters are 

temperature T and pressure P. For r = 2 (equilibrium state of two phases), we 

have f = 1, and only one of the variables T or P can be set arbitrarily: P = P(T) 
or T = T(P). Three phases are in equilibrium at the triple point if the condition 

r = 3 is fulfilled: T = Ttr, P = Ptr  and here f = 0. 

2. Two-component system (n = 2). For such a system, you can write 

4,4  rrf .                                    (3.7.24) 

For r = 1, we have f = 3, and three parameters will be independent variables T, 

P, and x. Symbol x indicates concentration (e.g., the concentration of salt in 

water). For r = 2, we have f = 2, and only two of the three parameters are 

independent. The following relations can be written: Ps = f1(T,x) – Raoult's law 

(law was established by François-Marie Raoult (10.05.1830 – 1.04.1901)) steam 

and solution are in equilibrium; Tm = f2(P,x) (solution and ice crystals are in 

equilibrium); xs = f3(T,P) (solution and salt crystals are in equilibrium). The 

following notation is used here: Ps is saturated vapour pressure; Tm is the melting 

point; xs is the concentration of the saturated solution. 

The equilibrium state of the five phases (r = 5) is forbidden by the Gibbs phase 

rule. 
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Test questions 

 

1. Describe the ionic bond of atoms in the molecule. 

2. Explain the existence of a covalent bond in a molecule consisting of two 

identical atoms. 

3. Write down the formula for the Lennard–Jones potential. 

4. Give the relationship between the forces of van der Waals and the distance 

between the atoms in the molecule. 

5. Is the hydrogen bond between atoms a separate type of bond? 

6. Give a definition of the phase of the thermodynamic system. 

7. Describe the critical pressure, critical volume, and critical gas temperature. 

8. Formulate the lever arm rule for a two-phase thermodynamic system. 

9. Describe the phenomenon of critical opalescence. 

10. Write down the Clapeyron – Clausius equation. 

11. Formulate the van der Waals equation for the molar volume of gas. 

12. Write down formulas that describe the relationship between critical parameters 

and Van der Waals constants. 

13. Indicate the features of the integral Joule – Thomson effect. 

14. Give a mathematical formulation of the differential Joule – Thomson effect. 

15. Indicate the nature of the inversion temperature change with increasing gas 

density. 

16. Describe the physical factors that cause surface tension. 

17. Write down the Laplace formula. 

18. Indicate the restrictions imposed on the application of the Thomson’s formula.  

19. Give a definition of chemical potential. 

20. Formulate the Gibbs phase rule. 

 



 90 

Problem-solving examples 
 

Problem 3.1  

 

Problem description. In a cylinder with a volume of V = 8 l is oxygen with mass 

m = 0.3 kg. Oxygen has a temperature of T = 300 K. Determine the part of the 

volume k that makes up the intrinsic volume of gas molecules. Calculate the ratio k1 

of internal pressure P′ to gas pressure P on the walls of the vessel. 

 

Known quantities: V = 8 l, m = 0.3 kg, T = 300 K. 

 

Quantities to be calculated: k, k1. 

 

Problem solution. The ratio of the intrinsic volume of gas molecules to the volume of 

the vessel is determined by the formula 

%100
V

V
k


 ,                                                 (P.3.1.1) 

where V is the volume of the cylinder; V′ is the intrinsic volume of gas molecules. 

We write the van der Waals equation 

  RTbV
V

a
P 


















2

2

,                               (P.3.1.2) 

where 



m

  is the amount of substance; μ is the molar mass of the substance; R is 

a gas constant; P is the pressure of the gas on the walls of the vessel; a and b are van 

der Waals constants for one mole of gas. 

The value of νb in the van der Waals equation is equal to the quadruple volume 

of gas molecules, i.e. 

Vb  4 .                                                 (P.3.1.3) 

Then 

4

b
V


                                                    (P.3.1.4)      

or 

4

mb
V  .                                                 (P.3.1.5) 

Substitute the found value V′ into the formula (P.3.1.1) 

V

mb
k

4
 .                                               (P.3.1.6) 
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We substitute the numerical values in the formula (P.3.1.6) 

%93.0100
10810324

1017.33.0
33

5











k . 

The ratio of internal pressure P′ to pressure P is determined by the formula 

%1001
P

P
k


 .                                           (P.3.1.7) 

The internal pressure P′ according to the van der Waals equation (P.3.1.2) is 

determined by the following relation 

2

2

V

a
P


                                                   (P.3.1.8) 

or 

22

2

V

am
P


 .                                            (P.3.1.9) 

We substitute the numerical values in the formula (3.1.9) 

   
Pa1087.1

1081032

136.03.0 5

2323

2





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
P . 

Gas pressure P on the vessel walls can be found from formula (P.3.1.2) 

2

2
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bV

RT
P 




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
 .                                     (P.3.1.10) 

We substitute the numerical values in the formula (P.3.1.10) 

 
Pa1054.1

108

136.0
38.9

1017.338.9108

300 31.838.9 6

23

2

53











P  

Substituting the obtained numerical values in the formula (P.3.1.7), we obtain 

%1.12100
1054.1

1087.1
6

5

1 



k

. 

Answer. The ratio of the intrinsic volume of gas molecules to the volume of the 

vessel is k = 0.93 %. The ratio of internal pressure to gas pressure on the walls of the 

vessel is k1 = 12.1 %. 
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Problem 3.2  

 

Problem description. In the cylinder under the piston is chlorine of mass m = 20 g. 

Determine the change in the internal energy of ΔU chlorine during its isothermal 

expansion from volume V1 = 200 cm3 to volume V2 = 500 cm3. 

 

Known quantities: m = 20 g, V1 = 200 cm3, V2 = 500 cm3. 

 

Quantities to be calculated: ΔU. 

 

Problem solution. The internal energy U of the real gas is determined by the ratio 











m
V

V

a
TcU  ,                                          (P.3.2.1) 

where ν is the amount of substance; cV is the specific heat of chlorine at a constant 

volume; T is the temperature of chlorine; a is the van der Waals constant assigned to 

one mole of chlorine; Vm is the molar volume of chlorine. 

For further analysis, it is necessary to take into account the following relations  




m
                                                       (P.3.2.2) 

and 



V
Vm  ,                                                     (P.3.2.3) 

where V is the volume occupied by the gas; m is a mass of chlorine; μ is the molar 

mass of chlorine. 

We rewrite equation (P.3.2.1) taking into account relations (P.3.2.2) and 

(P.3.2.3) 











V

ma
Tc

m
U V


.                                        (P.3.2.4) 

The change in internal energy ΔU as a result of isothermal expansion can be 

defined as the difference between the two values of internal energy U2 and U1 

 

21
2

12
2

12
VV

VVam
UUU




 ,                              (P.3.2.5) 

where V1 and V2 are the values of chlorine volumes before and after expansion, 

respectively. 

We substitute the numerical values in the formula (P.3.2.5) 
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   
J154

105102071.0

102105650.0102
442

4422











U  

Answer. The change in the internal energy of chlorine is ΔU = 154 J. 

 

Problem 3.3 

 

Problem description. Determine the change in the free energy ΔF of the surface of 

the soap bubble with an isothermal increase in its volume from V1 = 10 cm3 to 

V2 = 2V1.  

 

Known quantities: V1 = 10 cm3, V2 = 2V1. 

 

Quantities to be calculated: ΔF. 

 

Problem solution. The free energy F of the surface of the liquid is proportional to the 

area S of this surface 

SF  ,                                                    (P.3.3.1) 

where σ is the surface tension coefficient. 

The soap bubble has two surfaces (internal and external), the areas of which are 

almost equal due to the small thickness of the soap film. Therefore, the total free 

energy of the inner and outer surfaces of the soap bubble is 

SF 2 .                                                  (P.3.3.2) 

The process described in the problem statement is isothermal. The surface 

tension coefficient for a given liquid is a function of temperature only. Therefore, the 

surface tension coefficient is a constant.  

The change in free energy is 

SF  2 ,                                                (P.3.3.3) 

where ΔS is a change in only one surface of the soap bubble (internal or external).  

Suppose a soap bubble has the shape of a sphere. In this case, the change in 

surface area is 
2

1
2
2 44 rrS   ,                                            (P.3.3.4) 

where r1 and r2 are the radii of the spheres corresponding to the initial V1 and final 

V2 volumes. 

The radii of the spheres and volumes are related by the relations 
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Rewrite formula (P.3.3.4) 
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or, given that V2 = 2V1 
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We substitute the expression for changing the surface ΔS in the formula 

(P.3.3.3) 
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We substitute the numerical values in the formula (P.3.3.9) 

  J1005.112
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Answer. The change in the free energy of the surface of the soap bubble is 

ΔF = 1.05×10–4 J. 

 

 

Problems 
 

Problem A 

Problem description. The quartz flask is partially filled with liquid pentane C5H12. 

The flask was sealed so that only saturated steam was located above the pentane. The 

density of pentane is considered equal to 626 kg/m3. Determine the fraction ε of the 

internal volume of the flask that pentane should occupy, so that when heated, it is 

possible to observe the transition of a substance through a critical point. The van der 

Waals constant for pentane is b = 14.5×10–5 m3/mol. 

 

Answer. ε = 0.264. 
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Problem B  

Problem description. The volume V and pressure P of nitric oxide are three times 

higher than the corresponding critical values Vc and Pc. The critical temperature of 

nitric oxide is Tc = 180 K. Determine the temperature T of nitric oxide. 

 

Answer. T = 600 K.  

 

Problem C  

Problem description. The oxygen temperature is T = 350 K. Oxygen contains an 

amount of a substance equal to ν = 1 mol. Determine the relative error ε in the 

calculation of the internal energy of oxygen, if this gas is considered as ideal. 

Calculations are performed for two volume values: 1) V1 = 2 l; 2) V2 = 0.2 l. 
 

Answer. ε1 = 9.43×10–3 ; ε2 = 0.103. 

 

Problem D  

Problem description. Gaseous chlorine of mass m = 7.1 g is in a vessel of volume 

V1 = 0.1 l. Calculate the amount of heat Q that needs to be brought to chlorine, so 

that when the chlorine expands into a void to volume V2 = 1 l, the gas temperature 

remains unchanged  

 

Answer. Q = 58.5 J. 

 

Problem E  

Problem description. Two vertical capillary tubes are lowered by the lower ends into 

the liquid. The inner diameters of the tubes are d1 = 0.05 cm and d2 = 0.1 cm, 

respectively. The difference in fluid levels in the tubes is Δh = 11.6 mm. The density 

of the liquid is ρ = 0.8 g/cm3. Calculate the surface tension coefficient σ of a fluid. 

Answer. σ = 2.2×10–3 N/m. 
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CHAPTER 4. TRANSPORT PROCESSES 
 

4.1. Transport Processes in Gases 

 

If the system is in a non equilibrium state, then left to itself, it will gradually 

move to an equilibrium state. The time during which the system reaches an 

equilibrium state is called the relaxation time. The relaxation time is different with 

respect to different parameters by which the system can deviate from the equilibrium 

state.  

In equilibrium, the temperature at all points in the system is the same. When 

the temperature deviates from the equilibrium value in a certain region, the system 

moves heat in such directions to make the temperature of all parts of the system the 

same. The heat transfer associated with this movement is called thermal conductivity. 

The density of each component at all points of the phase is the same in 

equilibrium. When the density deviates from the equilibrium value in a certain 

region, the system moves the components of the substance in such directions to make 

the density of each component constant over the entire volume of the system. The 

transport of matter of the components that make up the phase associated with this 

movement is called diffusion. 

Various phases are stationary relative to each other in equilibrium. With 

relative phase motion, factors arise that tend to reduce the relative velocity. 

Consequently, braking forces or viscosity arise. The mechanism of these forces in 

gases is reduced to the exchange of momentum by various layers of gas, i.e. to the 

transfer of momentum of ordered movement.  

We denote by a symbol G some physical property that is assigned to one 

molecule. This property can be energy, momentum, concentration, electric charge, 

etc. If in equilibrium the quantity G is constant in volume, then in the presence of a 

gradient there is a movement of this quantity in the direction of decreasing gradient 

G. 

Let us direct the x  axis along the gradient of G. The average distance travelled 

by molecules crossing the area dS after the last collision is 3/2 l , where l  is the 

average mean free path. This value in most cases is quite small, and the value of G at 

a distance of 3/2 l  from the site can be represented as 

 
 
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2

3

2
.                          (4.1.1) 

We limited ourselves to the first term in the expansion of the value G in the 

Taylor series at point x. 

The flux of the number of molecules in the direction of the x axis is 4/0 vn , 

where n0 is the concentration of molecules, v  is the average speed. Therefore, the 

flux of G through the area dS in the direction of the negative x axis values is 
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The flux of G in the direction of positive values of x axis is 
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Therefore, the total flow in the positive direction of the x axis at point x is 
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.                          (4.1.4) 

Equation (4.1.4) is the basic equation for the transfer processes of a physical 

quantity G.  

Consider the process of thermal conductivity. In this case, the value G is the 

average energy of thermal motion per one molecule. The value of G is a variable in 

the case when the temperature at different points of the system changes. The value of 

IG in this case is the heat flux, which we will denote by the symbol Iq. From the 

theorem on the equal distribution of energy over degrees of freedom we have 
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.                     (4.1.5) 

Then the basic transport equation (4.1.4) takes the form 
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The value of λ, defined by equation (4.1.7), is called the coefficient of thermal 

conductivity. The following notation is used in equations (4.1.6) and (4.1.7): ρ = n0m 

is density; cV = CV /(NAm) is the specific heat of the gas at a constant volume. 

Equation (4.1.6) is called the Fourier equation for thermal conductivity or the 

Fourier’s law (law was named after Jean-Baptiste Joseph Fourier (21.03.1768 – 

16.05.1830)).  

Since the radii of all molecules are approximately the same, the values also 

differ little for different gases. The main change in thermal conductivity at a fixed 

concentration n0 of gas particles occurs due to differences in the average velocity 

v . Due to this, light gases have significantly higher thermal conductivity than 

heavy gases. 
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This is confirmed by experience. For example, oxygen and hydrogen have a 

thermal conductivity of 0.024 W/(mK) and 0.176 W/(mK) under normal conditions, 

respectively.  

The value of /10 ln  is independent of pressure. The value Tv ~  is 

also independent of pressure. Therefore, thermal conductivity is independent of 

pressure. Thermal conductivity is approximately directly proportional to the square 

root of temperature. 

Consider the viscosity process. Viscosity, or internal friction in gases, is caused 

by the transfer of momentum of the molecules across the direction of motion of the 

gas layers, which have different speeds.  

As a result of thermal motion, molecules pass from one layer to another, 

transferring momentum mu. Between the layers moving at different speeds, there is 

an exchange of molecules. Momentum faster than a moving layer decreases, and 

momentum slower than a moving layer increases.  

The friction force τ, referred to the area of the rubbing surfaces of the gas, is 

equal to the flow of the momentum of the ordered movement in the direction 

perpendicular to the velocity. In this case, the value of G is 

muG  .                                                  (4.1.8) 

Therefore, equation (4.1.4) takes the form 
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and  

lvmlvn 
3
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1
0  .                              (4.1.10) 

The value of η described by equation (4.1.10) is called dynamic viscosity. The 

sign of magnitude τ takes into account that the friction force acting on more rapidly 

moving layers is directed against speed. 

Since /10 ln  and Tv ~ , it can be concluded that the dynamic 

viscosity is independent of pressure and varies mainly in proportion to the square root 

of temperature. 

Together with dynamic viscosity, kinematic viscosity ν is also used, defined as 

dynamic viscosity, referred to density 




  .                                                 (4.1.11) 

Consider the diffusion process. With a non-uniform distribution of gas in the 

system, equalization of concentrations begins as a result of collisions between 

molecules. The tolerated amount in this case is the concentration of the species in 
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question. Suppose that the concentration of the first sort of molecules is n1(x). For 

value G, we can write the relation 

0

1

n

n
G  ,                                                    (4.1.12) 

where n0 is an equilibrium concentration.  

Equation (4.1.4) takes the form 
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where  

lvD
3

1
 .                                               (4.1.14) 

The value D described by equation (4.1.14) is called the diffusion coefficient. 

Equation (4.1.14) is called the Fick’s law (law was derived by Adolf Eugen Fick 

(3.09.1829 – 21.08.1901)).  

At a fixed temperature, the value v  is constant, and Pl /1~ . Therefore, at 

a constant temperature PD /1~ . On the other hand, at a fixed pressure Tl ~  and 

Tv ~ . Therefore, at constant pressure for the diffusion coefficient, we can write 

2/3~ TD .  

The relationship between the coefficients characterizing the transfer processes 

has the form 
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4.2. Relaxation Time 

 

As a result of transport phenomena, temperature and concentration are 

equalized, i.e. temperature and concentration change over time. The time during 

which this occurs is called the relaxation time of the system. An analysis of the 

change in thermodynamic quantities in time requires the explicit recording of 

unsteady heat conduction and diffusion equations.  

Consider the diffusion, the flow of which can be described using equation 

(4.1.13). Consider the volume V in the form of a cylinder, the base area of which is 

ΔS, and the height directed along the x axis is Δx. By the definition of flow, the 

change in the number of particles in the volume of the cylinder over time Δt is 

tS
x

xI
x

xIN nn 














 








 


22 111 .                  (4.2.1) 
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We expand flux 
1nI  in a Taylor series and restrict ourselves to a term linear in 

Δx. In this case, we can write 
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.                        (4.2.2) 

Therefore, formula (4.2.1) takes the form 
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Then 
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where ΔV = ΔSΔx is the test volume.  

Since the quantity D is independent of the coordinates, instead of equation 

(4.2.4), we can write 
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Formula (4.2.5) is a non-stationary equation of diffusion. Consider the case 

when the direction of diffusion does not coincide with the x  axis, but has an arbitrary 

direction. Then the value ΔN1 in the formula (4.2.1) can be expressed as the sum of 

the contributions along each of the coordinate axes. In the general case, instead of 

equation (4.2.5), we can write the following relation 

1
2

2
1

2

2
1

2

2
1

2
1 nD

z

n

y

n

x

n
D

t

n


































,                  (4.2.6) 

where  
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is the Laplace operator. 

Using equation (4.2.6), we can study the change in the concentration n1 of 

molecules at all points of the volume for a given concentration distribution at the 

initial time and under certain conditions at the boundary of the volume. 

Consider the case of non-stationary thermal conductivity. Analysis of non-

stationary thermal conductivity can be carried out similarly to the analysis of non-

stationary diffusion. Instead of particle flux 
1nI , it is necessary to take heat flux Q, 

which is described by equation (4.1.6). Then, instead of equation (4.2.4), we can 

write the following relation 
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where ΔQ = cV ΔmΔT is a change in the amount of heat in volume ΔV over time 

Δt; cV is the specific heat at a constant volume; ρ = Δm/ΔV is the density of the gas.  

Thermal conductivity λ can be described using formula (4.1.7). Taking into 

account the formula (4.1.15), the non-stationary heat equation (4.2.8) can be written 

as 
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is the coefficient of thermal diffusivity. 

When a certain value deviates from the equilibrium value, some factors arise 

that tend to return the value to this value. 

The rate at which the quantity approaches the equilibrium value is considered 

proportional to its deviation from the equilibrium value. The inverse of the coefficient 

of proportionality is the relaxation time.  

Consider the value q, the equilibrium value of which is q0. Then the statement 

formulated earlier can be written as follows 



qq

dt

dq 
 0

.                                               (4.2.11) 

The solution to this equation has the form 
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where  
00 


t

qq  is a deviation from the equilibrium value at the initial moment of 

time t = 0. 

In accordance with the general condition on exponentially changing quantities, 

the value τ has the meaning of the time when the value q reaches its equilibrium 

value. Therefore, the value τ is the relaxation time. 

Consider a volume whose linear dimensions are of the order of L with an 

average value of L . Suppose that n  is the average deviation of the particle 

concentration from the equilibrium value in the volume 
3~ LV . Let symbol nV   

denote the excess number of particles in the volume as compared with the number of 



 102 

particles corresponding to the equilibrium value. The change in the number of 

particles inside the volume over time dt is 

  SdtInVd n ,                                        (4.2.13) 

where S is the surface area limiting the volume; nI  is the average particle flux 

through the surface.  

Using relation Lnxn /~/  , we rewrite equation (4.2.13) 
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Solving equations (4.2.13) and (4.2.14) together, we obtain 
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The solution of equation (4.2.15) has the form 
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where  
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LV
n  .                                                 (4.2.17) 

The value τn determined from equation (4.2.17) is the relaxation time to the 

equilibrium concentration distribution. 

The calculation of the relaxation time for temperature is similar to the 

calculation just made. The relaxation time for temperature can be expressed by the 

following formula 

S

LVcV
T




  .                                              (4.2.18) 

 

4.3. Rarefied Gas Transport 

 

Let us consider transport processes in media with a low concentration of 

molecules and, accordingly, low pressure. The mean free path increases with 

decreasing pressure. Suppose that the mean free path has become equal to the linear 

geometric dimensions of the vessel in which the gas is located. In this case, the 

molecules collide only with the walls of the vessel and practically do not collide with 

each other.  

This state of gas is called vacuum. The concept of vacuum is relative. The 

larger the linear dimensions of the vessel, the lower the vacuum. Under normal 
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atmospheric conditions, the mean free path is approximately m10~ 8l . 

Consequently, the vacuum conditions are observed only in very small volumes with 

linear dimensions of d orders of the mean free path ld ~ .  

Since there are practically no collisions between molecules under vacuum 

conditions, the transfer processes considered earlier cease to be valid.  

Molecules in straight lines fly from one wall to another. When they collide 

with the walls, the molecules exchange energy with them. Thus, molecules are 

carriers of energy from hotter walls to colder ones. Therefore, it is more correct to 

speak not about the thermal conductivity of the gas, but about heat transfer, since 

there is no temperature gradient in the volume of the vessel. 

The dependence of heat transfer ability on gas pressure is different than the 

dependence of heat conductivity on pressure at a higher pressure. At high pressure, 

thermal conductivity is independent of pressure. Heat transfer at low pressure 

increases with increasing pressure, since the frequency of impact of molecules on the 

walls of the vessel increases. Conversely, heat transfer decreases with decreasing 

pressure to arbitrarily small values. An example of the practical use of this effect is a 

cryogenic storage dewar (named after James Dewar  (20.09.1842 – 27.03.1923)). In 

the hollow walls of the Dewar vessel, vacuum conditions are created with a 

sufficiently low heat transfer.  

Consider the features of diffusion at low pressures. Since there are practically 

no collisions between molecules in the volume, the transfer of molecular traits occurs 

with the speed of movement of the molecules, i.e. very fast. The concentration 

equalization time, even in very large volumes, is short. This time depends on the 

shape of the vessel.  

Consider two solid surfaces moving relative to each other. Between the 

surfaces there is gas in a vacuum. In this case, friction forces arise between the 

surfaces, which tend to slow down the more rapidly moving surface and accelerate 

the less rapidly moving surface. This phenomenon is similar in appearance to the 

appearance of similar friction forces at a fairly high air pressure between moving 

surfaces, but the mechanism is completely different.  

Under vacuum conditions, there are no gas layers between moving surfaces 

that move translationally relative to each other, as a result of which an internal 

friction force would be transmitted from layer to layer.  

In a collision with a moving surface, the molecule acquires the corresponding 

impulse of ordered motion and, flying without collisions the space between the 

surfaces, exchanges the impulse of its ordered motion with another surface. The 

momentum transmitted to the surface by molecules in every second is numerically 

equal to the friction force.  

Thus, under vacuum, there is no internal friction in the gas in the sense in 

which it exists at a higher pressure. However, we can observe the mutual friction of 

surfaces moving relative to each other. 

Consider a system that consists of two vessels communicating through a 

porous septum. The pore sizes in the porous septum can be arbitrarily small. 
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However, in these pores the vacuum conditions are observed even at normal 

atmospheric pressure.  

Suppose that the same gas is located on different sides of the partition, but at 

different temperatures. In this case, an equilibrium state is established in the gas, in 

which the pressure on different sides of the partition is different. Denote the 

quantities related to volumes on opposite sides of the partition by indices 1 and 2.  

Under equilibrium, the number of molecules passing through the porous 

septum from one half of the vessel to the other half is equal to the number of 

molecules passing through the same septum in the opposite direction. The frequency 

of molecular impacts on the wall is 4/0 vn . Since the pores of the molecule 

themselves pass without collisions, the condition for the equality of the number of 

molecules for both directions can be formulated as 

44

202101 ee SnSn 
 ,                                      (4.3.1) 

where Se is the effective total pore area in the septum.  

Using the relation, which can be written for concentration n0 = P/ (kT) and for 

average velocity Tconstv  , from equation (4.3.1) we can obtain 
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Therefore, the pressure is increased in those areas of the vessel where an 

increased temperature value is observed. 

Such a situation is impossible under normal conditions, since the 

hydrodynamic flows arising from the pressure difference quickly equalize the 

pressure. Formula (4.3.2) was experimentally confirmed by Reynolds. 

Consider the exchange of molecules of various varieties through a porous 

septum. Imagine that at some point in time the volumes on opposite sides of the 

porous septum of the vessel are filled with two different gases at the same pressure 

and temperature. Such a state is not equilibrium. The density of molecules on both 

sides of the septum is the same, but the average speeds of the molecules are different. 

Lighter molecules move faster. Therefore, the frequency of impacts of light 

molecules on the septum is greater than heavy. Accordingly, the number of light 

molecules penetrating the septum is greater than heavy. 

The pressure in the volume of the vessel occupied by heavy molecules begins 

to increase, and the pressure in the volume of the vessel occupied by light molecules 

begins to decrease. As the molecules mix, the pressure growth slows down and then 

stops. The number of molecules penetrating the septum on both sides is leveled. 

However, the concentration of molecules of each variety on opposite sides of the 

septum is not equal. Only after some time does the pressure and concentration of 

molecules of each sort become equalized. 
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When a molecule hits a surface, it interacts with only a small number of atoms 

or molecules near the surface. In this type of interaction, the angle of reflection in the 

general case is not equal to the angle of incidence and depends on the specific 

conditions of interaction with surface molecules. Such a surface is called a rough 

surface.  

For molecules coming from a given direction, the reflection angle is on average 

less than the angle of incidence. As a result of this, not only the pressure force acts on 

the surface, but also the tangential force in the direction of the tangential component 

of the velocity of the molecules incident on the surface. 

For the case when the flows to the surface from all directions are the same, the 

tangential forces are mutually compensated, and only the pressure of the molecules 

on the surface remains. 

The reflection of molecules from the surface leads to a change in their energy. 

If the temperature of the flows of molecules incident on the surface is equal to the 

temperature of the surface, then the temperature of the reflected flows is equal to the 

temperature of the incident flows. In other cases, as a result of interaction with the 

surface, the flow temperature changes and becomes equal to the surface temperature.  

Consider the interaction of molecules with the surface in a deep vacuum. The 

flow of molecules in this case is isotropic and has the same temperature in all 

directions. If the surface temperature is constant, then no tangential forces arise and 

the pressure at all points on the surface is the same. 

If the surface temperature changes from point to point, it is obvious that there 

are still no tangential forces, because the incident stream of molecules is still 

isotropic, but the pressure at different points on the surface is different. The pressure 

is greater on the surface area with a higher temperature, since when the molecules are 

reflected, the normal component of their momentum not only reverses direction, but 

also increases in absolute value.  

As a result of these processes, forces acting on a body with a temperature 

varying along its surface under vacuum conditions cause its centre of mass to move 

and create a moment of rotation about an axis passing through the centre of mass. 

These forces are called radiometric forces. 

Consider the case of a not very deep vacuum. The nature of the interaction of 

molecules with the wall will remain as it was analyzed previously. However, now the 

surface temperature affects the temperature of the gas in a layer near the surface. 

Collisions between molecules occur in this layer.  

Due to collisions, the properties of the flow of molecules falling on the surface 

change. If the surface is heated uniformly, then, as in the previous case, tangential 

forces do not arise, and the pressure at all points on the surface is the same. If the 

temperature at different points on the surface is different, then the situation changes. 

Suppose, for definiteness, that the surface temperature rises along some 

positive axis direction. Then the falling molecules have an average tangential 

component of the force in the direction of the negative values of the axis. This force 

is applied to the surface of the body. 

The momentum change of the molecules that interact with the surface should 

be directed in the opposite direction, i.e. towards positive x axis values. This means 
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that in the near-wall layer there is a flow along the surface, directed from less heated 

parts of the surface to more heated parts of the surface. 

The described phenomenon is called thermal slip. Thermal glide occurs when 

the vacuum is not too deep.  

With increasing pressure between regions with different pressures, 

hydrodynamic flows arise, which equalize the pressure. As a result of an increase in 

temperature near the warmer sections of the surface, gas pressure rises and gas flows 

occur along the surface from the warmer sections to the less heated sections.  

These flows compensate for thermal slip and equalize pressure at various 

surface areas. Therefore, both radiometric forces and forces due to thermal slip are 

eliminated. 

 

4.4. Transport Phenomena in Solids and Liquids 

 

Transport phenomena also occur in liquids and solids. The transport 

mechanism in liquids and solids is different from the transport mechanism in gases. 

In liquids and solids, the notion of mean free path loses its meaning. In addition, the 

forces of interaction between the molecules of solids and liquids are very large and 

have a constant effect on the movement of molecules. 

In solids, both diffusion and mutual diffusion are observed. This is most clearly 

demonstrated by the fact of the interpenetration of the matter of two bodies that have 

been in close contact with each other for a rather long time. Diffusion in solids is 

carried out using three main mechanisms. 

1. If there is a vacancy in the site of the crystal lattice, then one of the 

neighbouring atoms can make a transition from its site to the vacant site. 

This transition is equivalent to the movement of a vacancy. In order for the 

diffusion process to take place, it is necessary that an uneven distribution of 

vacancies be present in the lattice. The uneven distribution of vacancies can 

be described using the gradient of vacancies. For diffusion through the 

movement of vacancies, the simultaneous presence of two conditions is 

necessary: the existence of a vacancy and the formation of a sufficiently 

large vibrational energy in one of the neighbouring atoms so that it can 

leave its area. 

2. Atom leaves the node if it has sufficiently high energy oscillations. If there 

are no vacancies in the neighbourhood, then atom is located between nodes 

and then moves in internodes.  

3. In a solid, an exchange of atoms is possible at neighbouring lattice nodes. 

This diffusion mechanism is not related to the motion of defects in the 

crystal lattice.  

Diffusion in a solid is described by the Fick’s law, but the diffusion coefficient 

D is determined by other factors. The main role in diffusion is played by the 

movement of vacancies. We introduce the following notation:   is the average 

lifetime of an atom in the nodes of the crystal lattice; d  is the displacement of the 
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atom during the jump. The value of d  is approximately equal to the main periods of 

the crystal lattice. The average velocity of the atoms at jumps equals 



d
v  .                                                       (4.4.1) 

An atom can equally likely jump d  in six independent directions. Further 

analysis is similar to that which was carried out in deriving equations (4.1.4) and 

(4.1.13). As a result, for the diffusion coefficient we can write 
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We denote by symbol Ev the energy upon acquisition of which the atom leaves 

its node. As a result of this process, a vacancy is formed. In accordance with the 

Gibbs distribution, the probability of vacancy formation is 
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We denote by symbol Ej the energy that an atom must have in order to jump 

into an existing vacancy. Then for the hopping probability we can write the relation 
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The probability of the formation of a vacancy of a simultaneous atomic jump 

into this vacancy is 
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where A = Av Aj = const; Ea = Ev + Ej is the activation energy of diffusion, 

determined by the properties of the substance. 

The jumping frequency is directly proportional to the hopping probability, i.e. 

P~/1  . Substituting this expression for   into the formula (4.4.2), we get 
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where   6/
2

0 dAD   is a constant determined by the properties of the substance. 

The diffusion coefficient in solids is very small compared with the diffusion 

coefficient in gases. For example, for gold and oxygen, the diffusion coefficients are 

10–35 m2 / s and 10–5 m2 / s, respectively. 
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Thermal conductivity in solids is carried out not by the movement of 

molecules, as in gases, but through the interaction of molecules, as a result of which 

the movement of molecules becomes collective. As a result, the motion of molecules 

in a solid is described as an ideal phonon gas.  

The thermal conductivity in solids can be described by the ratio 

3

Vphs clv
  ,                                            (4.4.7) 

where vs is the speed of sound in a solid; phl  is the mean free path of phonons: 

1~ Tlph .  

The thermal conductivity of solids is many times greater than the thermal 

conductivity of gases. The thermal conductivity of gases under normal conditions is 

of the order of 1 mW/(mK), while the thermal conductivity of solids is of the order 

of 1 kW/(mK).  

If a solid body is surrounded by a medium with a temperature different from 

that of the body, then a stream of heat flows through the surface of the body. The 

temperature on the surface of the body experiences a jump from body temperature T 

to the temperature T0 of the environment. As experience shows, at small temperature 

differences T – T0, the normal component of the heat flux is proportional to this 

temperature difference 

 0TTIqn  ,                                              (4.4.8) 

where α is the coefficient of external thermal conductivity.  

Consider diffusion in liquids. The mechanism of diffusion in liquids is similar 

to the mechanism of diffusion in a solid. A molecule in a liquid abruptly changes its 

environment and moves to another point. If the average lifetime of the molecule 

between the jumps is denoted by the symbol  , then for the diffusion coefficient in 

the liquid we can obtain the expression 

 
6

2


D ,                                                   (4.4.9) 

where   is the average distance that a molecule jumps from its environment.  

The time   in the fluid is also determined through the probability of a jump. 

In determining the probability of a jump, one needs to take into account the required 

energy and the probability that the molecule has this energy. In addition, it is 

necessary to take into account the probability that there are conditions for hopping in 

the environment of the molecule. As a result, for the diffusion coefficient, we can 

obtain a ratio similar to that presented in formula (4.4.6). In this case, the activation 

energy Ea  is determined by the properties of the liquid. The diffusion coefficient of 
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liquids is much less than that of gases, but much more than that of solids. A typical 

diffusion coefficient order for liquids is 10–9 m2 / s.  

As in solids, thermal conductivity in liquids is carried out by the transfer of 

thermal motion from one molecule to another as a result of interaction. However, a 

simple picture in the form of phonon motion in the case of liquids does not work out 

and the whole theory becomes complicated.  

The mechanism of the appearance of viscosity in liquids cannot be presented as 

simply as in rarefied gases, when the picture is reduced to the transfer of momentum 

of the ordered motion of gas layers during the transition of molecules from one layer 

to another. Using the mechanism of molecular jumps to describe viscosity leads to 

the following relation  Tb /exp~  . However, in experimental studies revealed 

a dependence of  Tb /exp~  .  

The pattern of molecule jumps from one position to another can be used, but it 

is necessary to consider these jumps in the direction of action of the force, i.e. 

perpendicular to the speed gradient. In this case, the process turns out to depend on 

the specific features of intermolecular forces. The molecule has to break its ties with 

its immediate environment in order to advance in the direction of the force. The 

bonds between the molecules that have to be overcome in this case are similar to 

those that are overcome during evaporation.  

The calculation of the considered process is extremely complicated. It turns out 

that the dynamic viscosity depends on an external force, although this dependence is 

not always significant. In particular, for ordinary liquids with not very large values of 

external forces, this dependence is not significant.  

The dynamic viscosity of most liquids is well described by the formula 
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b
Aexp ,                                          (4.4.10) 

where coefficients A and b are determined by the properties of the liquid. 

The dynamic viscosity of a liquid decreases significantly with increasing 

temperature. This behaviour of the dynamic viscosity of a liquid is the opposite of the 

behaviour of the dynamic viscosity of gases. The dynamic viscosity of gases 

increases with temperature.  

The dynamic viscosity of ordinary, not very viscous liquids is of the order of  

1 mPas. In viscous fluids, the dynamic viscosity increases thousands of times. For 

example, the dynamic viscosity of water at a temperature of 20 0С is equal to 

1.00210–3 Pas.  

 

4.5. Thermodynamics of Irreversible Processes 

 

Transfer processes are irreversible. A description of their general appearance is 

phenomenological in nature. The transfer mechanism must be considered only to 

calculate the corresponding transfer coefficient.  
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The task of the thermodynamics of irreversible processes is to study the 

phenomenological laws of irreversible processes, in which they do not go into the 

discussion of the internal mechanisms of these processes.  

The phenomenological equations describing transport processes have the form 

x

T
Iq




  ,                                                 (4.5.1) 

x

n
DIn



 ,                                                 (4.5.2) 

x

u
Imu




  .                                               (4.5.3) 

It is advisable to add Ohm's law in differential form to these equations for 

further applications 

x
j







 ,                                                (4.5.4) 

where j is the current density; γ is the electrical conductivity; φ is the potential of the 

electric field; x /  is the electric field strength. 

Equations (4.5.1) - (4.5.4) can be written similarly for the y axis and z axis.  

The peculiarity of these equations is that they describe the flow of a certain 

quantity standing on the left side of the equality, which arises due to the 

corresponding driving force standing on the right side of the equality. This force is a 

gradient of some magnitude. All equations for flow have the form 

LXI  ,                                                   (4.5.5) 

where I is a flux of magnitude; X is a generalized force creating a flux; L is a 

coefficient of proportionality. 

In the cases that were considered earlier, each flux was determined by only one 

driving force. However, even in thermal diffusion, the flow of molecules was 

determined by two driving forces: a density gradient and a temperature gradient. 

Therefore, in the general case, the expression for the flux Ii has the form 


j

jijiii XLXLXLI ...2211 ,                       (4.5.6) 

where index i numbers the types of flows, and index j numbers the types of driving 

forces. The number of equations of type (4.5.6) is equal to the number of fluxes. 

Equations (4.5.6) are called linear phenomenological equations of the 

thermodynamics of irreversible processes. The coefficients Lij in these equations are 

called Onsager coefficients (was named after Lars Onsager (27.11.1903 –

5.10.1976)). 
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Statistical thermodynamics proves that the coefficients Lij are not completely 

independent. There are relations between these coefficients 

jiij LL  .                                                (4.5.7) 

Equations (4.5.7) are called Onsager relations. 

Another important point of the thermodynamics of irreversible processes is the 

formula for the production of entropy 









ii

pr

XIXIXI
dt

dS
...2211 ,                      (4.5.8) 

where  prdtdS /  is the rate of production of entropy related to volume, i.e. entropy 

density production rate.  

Thus, fluxes Ii and forces Xi cannot be arbitrarily selected. They must be such 

that equality (4.5.8) holds.  

The selection of flows and driving forces must be carried out in such a way as 

to ensure uniformity of dimension in both sides of equality (4.5.8). For example, if 

heat flux Iq is selected as the flux, then the value    xTTXq  //1 2
 should 

be taken as the driving force. Similarly, we can conclude that if we take the density of 

electric current j as the flow, then we must take    xTX  //1   as the driving 

force.  

Based on the foregoing, we can conclude that in the heat flux entropy is formed 

according to the law 

x

T

T

I

x

T

T
I

dt

dS q
q

pr 
























22

1
.                          (4.5.9) 

The rate of production of the entropy density during the passage of electric 

current can be calculated using the formula 

xT

j

dt

dS

pr 










 
.                                       (4.5.10) 

Consider the thermodynamic phenomena in the presence of coupled flows. Let 

us analyze the density of electric current and heat flux, which are interconnected. In 

accordance with equation (4.5.6), we write the electron flux and heat flux in the form 

xT
L

x

T

T
LI qeqqq











11
2

,                                 (4.5.11) 
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xT
L

x

T

T
Lj eeeq











11
2

.                             (4.5.12) 

For the case of unconnected flows of heat and electrical conductivity, these 

equations take the form 

x

T

T
LI qqq






2

1
.                                         (4.5.13) 

xT
Lj ee






1
.                                            (4.5.14) 

Comparing equations (4.5.13) and (4.5.14) with equations (4.5.1) and (4.5.4), 

we obtain 

2T

Lqq
 .                                               (4.5.15) 

T

Lee .                                               (4.5.16) 

Consider the case when there is no electric current ( j = 0 ). Then equation 

(4.5.12) takes the form 
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.              (4.5.17) 

In this case, we can write 
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.             (4.5.18) 

Equation (4.5.18) means that the presence of a temperature gradient in the 

absence of an electric current causes a potential difference. In other words, a 

temperature gradient leads to an electric field. This phenomenon is called the  

Seebeck effect (was named after Thomas Johann Seebeck  (4.04.1770 – 10.12.1831)). 

The value 

TL

L

T
E

ee

eq

j

T 













0


                              (4.5.19) 

is called the thermoelectromotive force.  

Consider the processes at the transition between two different conductors a and 

b under isothermal conditions. When an electric current passes through the boundary 

of two conductors, either cooling or heating of this boundary occurs. This 
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phenomenon is called the Peltier effect. (was named after Jean Charles Athanase 

Peltier (22.02.1785 – 27.10.1845)) 

The power of heat that is released or absorbed at the boundary of the 

conductors is 

    jAjEEATIIAI abTaTbqaqbqab  ,                  (4.5.20) 

where  

 TaTbab EET                                              (4.5.21) 

the Peltier coefficient. 

 

Test questions 
 

1. Give a definition of the physical phenomenon of diffusion. 

2. Write down the basic equation of the processes of transfer of a physical 

quantity. 

3. What physical parameters of the system affect the coefficient of thermal 

conductivity? 

4. Write down the Fourier’s law for thermal conductivity. 

5. Draw a graph of the thermal conductivity versus temperature. 

6. Describe in detail the physical viscosity process. 

7. What physical parameters affect the dynamic viscosity coefficient? 

8. Is the statement that dynamic viscosity coefficient depends on pressure true? 

9. Give the formula by which the diffusion coefficient is determined. 

10. Write down the Fick’s law. 

11. Give the equations describing the relationship between the coefficients 

characterizing the transfer processes. 

12. Write down the unsteady diffusion equation. 

13. Give the formula by which the coefficient of thermal diffusivity is determined. 

14. Indicate the nature of the change in the relaxation time for the concentration 

with a decrease in the diffusion coefficient. 

15. Is the statement that the state of vacuum implies the absolute absence of gas 

molecules in the vessel true? 

16. Explain the nature of the physical processes that give rise to radiometric forces. 

17. Write down the formula for the diffusion activation energy. 

18. Compare the diffusion coefficients in solids and gases. 

19. Write down the Onsager relations. 

20. Consider the physical background for the Seebeck effect. 
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Problem-solving examples 
 

Problem 4.1  

 

Problem description. The average mean free path of a carbon dioxide molecule under 

normal conditions is nm40l . Determine the average speed v  of molecules 

and the average number z  of collisions that the molecule experiences in time 

t = 1 s. 

 

Known quantities: nm40l , t = 1 s. 

 

Quantities to be calculated: v , z . 

 

Problem solution. The average speed of molecules is determined by the formula 



RT
v

8
 ,                                                 (P.4.1.1) 

where R is the gas constant; T is the temperature of carbon dioxide; μ is the molar 

mass of carbon dioxide. 

 Substitute the numerical values in the formula (P.4.1.1) 

m/s1062.3
104414.3

27331.88 2

3








 . 

The average number z  of collisions of a molecule over time t = 1 s is 

determined by the ratio of the average speed v  of the molecule to the average mean 

free path l  

l

v
z  .                                                     (P.4.1.2) 

We substitute numerical values in the formula (P.4.1.2) 

19

9-

2

s1006.9
1040

1062.3 



z  

Answer. The average speed of molecules is m/s1062.3 2v . The average 

number of collisions of a molecule in one second is 
19 s1006.9 z . 
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Problem 4.2  

 

Problem description. Two thin-walled coaxial cylinders of length l = 10 cm can 

freely rotate around their common axis z. The radius of the large cylinder is 

R = 5 cm. Between the cylinders there is a gap of size d = 2 mm. Both cylinders are 

in the air under normal conditions. The inner cylinder is rotated at a constant 

frequency of n1 = 20 s–1. The outer cylinder is inhibited and does not rotate. 

Determine after what period of time Δt from the moment the external cylinder is 

released, it will rotate with a frequency of n2 = 1 s–1. Neglect the change in the 

relative speed of the cylinders. The mass of the outer cylinder is m = 100 g. 

 

Known quantities: l = 10 cm, R = 5 cm, d = 2 mm, n1 = 20 s–1, n2 = 1 s–1, 

m = 100 g. 

 

Quantities to be calculated: Δt. 
 

Problem solution. The layer of air between the cylinders begins to rotate when the 

inner cylinder rotates. Near the surface of the inner cylinder, the air layer with time 

acquires almost the same linear velocity as the speed of the points on the surface of 

the inner cylinder. Therefore, the speed v of the air layer is 

 dRnv  12 ,                                        (P.4.2.1) 

where n1 is the rotational speed of the inner cylinder; R is the radius of the outer 

cylinder; d are the dimensions of the gap between the inner and outer cylinders. 

Since d << R, then we can approximately assume that 

Rnv 12 .                                                (P.4.2.2) 

Due to internal friction, the angular momentum is transmitted to adjacent gas 

layers and, ultimately, to the external cylinder. The external cylinder acquires a 

moment of impulse L for a time interval of Δt 

pRL  ,                                                    (P.4.2.3) 

where p is the momentum that the outer cylinder received in time Δt. 
Consequently, the momentum of the points on the surface of the outer cylinder 

is 

R

L
p  .                                                      (P.4.2.4) 

On the other hand, for the momentum p, we can write the following relation 
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tS
dz

dv
p  ,                                         (P.4.2.5) 

where η is the coefficient of dynamic viscosity; 
dz

dv
 is the speed gradient in air; S is 

the area of the outer cylinder. 

We define the time interval Δt from formulas (P.4.2.4) and (P.4.2.5) 





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
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S
dz

d
R

L
t




.                                        (P.4.2.6) 

The angular momentum of the outer cylinder is 

2
2

2
2

2 2 nmRmRJL   ,                        (P.4.2.7) 

where J is the moment of inertia of the outer cylinder about z axis; ω2 is the angular 

velocity of the outer cylinder; m is the mass of the outer cylinder; n2 is the rotational 

speed of the outer cylinder. 

The gradient of speed is 

d

v

z

v

dz

dv
 .                                             (P.4.2.8) 

The area of the outer cylinder is 

RlS 2 ,                                                (P.4.2.9) 

where l is the length of the coaxial cylinders. 

Substituting formulas (P.4.2.7), (P.4.2.8), (P.4.2.9) into formula (P.4.2.6), we 

obtain 

lv

mdn
t


2 .                                           (P.4.2.10) 

We rewrite the formula (P.4.2.10) taking into account the expression for speed 

from the formula (P.4.2.1) 

1

2

2 Rnl

mdn
t


 .                                       (P.4.2.11) 

 Substitute the numerical values in the formula (P.4.2.11) 

s5.18
201051072.11.014.32

11021.0
25

3











t . 

Answer. Time interval is equal  Δt = 18.5 s. 
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Problem 4.3 

 

Problem description. The vessel has a volume V = 10–3 m3. There is a vacuum inside 

the vessel. A small hole with an area of S = 10–10 m2 is opened in the vessel. 

Calculate the time τ after which the pressure in the vessel becomes equal to half the 

atmospheric pressure. The temperature of the air in the vessel is equal to the 

temperature of the outside air. 

 

Known quantities: V = 10–3 m3, S = 10–10 m2. 

 

Quantities to be calculated: τ. 
 

Problem solution. The number of molecules in a volume of 1 cm3 that enter the 

vessel during the time interval from t to t + dt is 

Sdt
vn

nd
4

0 ,                                             (P.4.3.1) 

where n0 is the number of molecules in a volume of 1 cm3 of external air at 

atmospheric pressure;   is the average velocity of the molecules of external air; S 

is the area of the hole. 

The number of molecules in a volume of 1 cm3 that emitting the vessel during 

the time interval from t to t + dt is 

Sdt
vn

nd
4

 ,                                               (P.4.3.2) 

where n is the number of molecules in the volume of 1 cm3 of the vessel at time t. 
The total balance equation has the form 

 dtnn
V

S

V

ndnd
dn 


 0

4


,                            (P.4.3.3) 

where V is the volume of the vessel; dn is an increase in the number of molecules in 

the volume of 1 cm3 of the vessel over time dt. 
We write one of the forms of the equation of state of an ideal gas 

nkTP  ,                                                      (P.4.3.4) 

where P is the air pressure in the vessel after a time of t + dt; k is the Boltzmann 

constant; T is the thermodynamic temperature of the air in the vessel. 
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We transform the formula (P.4.3.4) 

kT

dP
dn  .                                                     (P.4.3.5) 

In this case, the balance equation has the form 

 dtPP
V

Sv
dP  0

4
,                                 (P.4.3.6) 

where P0 is atmospheric pressure. 

We integrate equation (P.4.3.6) 

 


2/

0 00

0

4

P

dt
V

Sv

PP

dP 

,                                   (P.4.3.7) 

where τ is the time interval during which the pressure in the vessel increases to a 

value of 2/0P . 

Formula (P.4.3.7) allows you to determine the time interval τ 

S

V




4
 .                                                  (P.4.3.8) 

We substitute numerical values in the formula (P.4.3.8) 

s1064.8
101063.4

104 4

102

3











 . 

Answer. Time interval is equal τ  = 8.64×104 s. 

 

 

Problems 
 

Problem A  

 

Problem description. Calculate the diffusion coefficient of nitrogen for the following 

cases: 1) under normal conditions; 2) at pressure P = 100 Pa and temperature 

T = 300 K. 

 

Answer. D1 = 9×10–5 m2/s, D2 = 0.061 m2/s. 
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Problem B  

 

Problem description. Determine how many times the diffusion coefficient D1 of 

gaseous hydrogen differs from the diffusion coefficient D2 of gaseous oxygen if both 

gases are under the same conditions. 

 

Answer. k = 7.1. 

 

Problem C  

 

Problem description. Two horizontal disks of radius R = 20 cm are located in the air 

one above the other so that their axes coincide. The distance between the planes of 

the disks is d = 0.5 cm. The upper disk is stationary, and the lower disk rotates at a 

frequency of n = 10 s–1. Calculate the torque acting on the upper disc. The 

coefficient of dynamic viscosity of air is η = 1.72 μPa·s.  

 

Answer. M = 5.8×10–4 N·m. 

 

Problem D  

 

Problem description. Determine the coefficient of dynamic viscosity of helium under 

normal conditions, if the diffusion coefficient under the same conditions is 

D = 1.06×10–4 m2/s. 

 

Answer. η = 1.9×10–5 Pa·s. 

 

Problem E  

 

Problem description. The space between two large parallel plates is filled with 

helium. The distance between the plates is d = 5 mm. The temperature of one of the 

plates is T1 = 290 K. The temperature of the second plate is T2 = 310 K. Helium 

pressure is P = 0.1 MPa. Calculate the heat flux density between these plates. 

 

Answer. q = 196 W/m2. 
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APPENDICES 
 

Table A1. Greek alphabet 

Name Capital Lower-case Name Capital Lower-case 

Alpha A  Nu N  

Beta B  Xi   

Gamma Г  Omicron O  

Delta   Pi П  

Epsilon E  Rho P  

Zeta Z  Sigma   

Eta H  Tau T  
Theta   Upsilon ϒ  

Iota I  Phi Ф  

Kappa K  Chi X  

Lambda   Psi   

Mu M  Omega   

 

 

Table A2. SI prefixes 

Prefix Representation Prefix Representation 

Name Symbol Base 10 Name Symbol Base 10 

yotta Y 1024 deci d 10–1 

zeta Z 1021 centi c 10–2 

exa E 1018 milli m 10–3 

peta P 1015 micro   or u 10–6 

tera T 1012 nano n 10–9 

giga G 109 pico p 10–12 

mega M 106 femto f 10–15 

kilo k 103 atto a 10–18 

hecto h 102 zepto z 10–21 

deca da 101 yocto y 10–24 
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Table A3. SI base units  

Unit 

name 

Unit 

symbol 

Quantity 

name 
Definition 

metre m length 
The distance travelled by light in vacuum in 

1/299792458 second. 

kilogram kg mass 

The kilogram is defined by taking the fixed 

numerical value of the Plank constant h to be 

6.6260701510–34 when expressed in the unit 

Js, which is equal to kgm2s–1 , where the 

metre and the second are defined in terms of 

c and Cs. 

second s time 

The second is define by taking the fixed 

numerical value of the caesium frequency 

Cs, the unperturbed ground-state hyperfine 

transition frequency of the 133C atom, to be 

9192631770 when expressed in the unit Hz, 

which is equal to s–1. 

ampere A 
electric 

current 

The ampere is defined by taking the fixed 

numerical value of the elementary charge e to 

be 1.60217663410–19 when expressed in unit 

C, which is equal to As, where the second is 

defined in terms of Cs. 

kelvin K 

thermodyna

mic 

temperature 

The kelvin is defined by taking the fixed 

numerical value of the Boltzmann constant k 

to be 1.38064910–23 JK–1 (J=kgm2s–2), 

given the definition of the kilogram, the 

metre, and the second. 

mole mol 
amount of  

substance 

The amount of substance of exactly 

6.022140761023 elementary entities. This 

number is the fixed numerical value of the 

Avogadro constant, NA, when expressed in 

the unit mol–1 and is called the Avogadro 

number. 

candela cd 
luminous  

intensity 

The luminous intensity, in a given direction, 

of a source that emits monochromatic 

radiation of frequency 5.41014 Hz and that 

has a radiant intensity in that direction of 

1/683 watt per steradian. 
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Table A4. SI derived units 

Unit name 
Unit 

symbol 
Unit Equivalents Quantity name 

hertz Hz s–1 frequency 

radian rad 

One radian is the angle 

subtended at the center of a 

circle by an arc that is 

equal in length to the 

radius of the circle. 

angle 

steradian sr 

The solid angle subtended 

at the center of a unit 

sphere by a unit area on its 

surface 

solid angle 

newton N kg×m×s–2 force, weight 

pascal Pa N/m2 = kg×m–1×s–2 pressure, stress 

joule J N×m = kg×m2×s–2 energy, work, heat 

watt W J/s = kg×m2×s–3 power, radiant flux 

coulomb C A×s electric charge 

volt V J/C = kg×m2×s–3×A–1 
voltage,  

electromotive force 

farad F C/V = A2×s4× kg–1×m–2 electrical capacitance 

ohm  or Ohm V/A = kg×m2×s–3×A–2 
electrical resistance, 

impedance 

siemens S 1/Ohm = A2×s3× kg–1×m–2 electrical conductance 

weber Wb V×s = kg×m2×s−2×A−1 magnetic flux 

tesla T Wb/m2 = kg× s−2×A−1 magnetic field strength 

henry H Wb/A = kg×m2×s−2×A−2 electrical inductance 

degree 

Celsius 
°C K 

temperature relative to 

273.15 K 

lumen lm cd×sr = cd luminous flux 

lux lx lm/m2 = cd×m–2 illuminance 

becquerel Bq s–1 radioactivity 

gray Gy J/kg = m2×s–2 absorbed dose 

sievert Sv J/kg = m2×s–2 equivalent dose 

katal kat mol/s = mol×s−1 catalytic activity 



 124 

 

Table A5. Physical constants 

Quantity Symbol Value 

Avogadro constant AN  6.0221415(10)×1023 mol–1  

Boltzmann constant k  1.3806505(24)×10–23 J / K 

Electric constant 0  8.854187817×10–12 F×m–1  

Faraday constant F  96485.3383(83) C×mol–1  

Fine-structure constant   7.297352568(24) ×10–3  

Gravitational constant G  6.6742(10)×10–11 N×m2 / kg2 

Magnetic constant 0  4×10–7 T×m /A (exact) 

Molar gas constant R  8.314472(15) J/(mol×K) 

Planck constant h  6.6260693(11)×10–34 J×s 

Rydberg constant HR  1.0973731568525(73)×107 m–1  

Stefan-Boltzmann constant   5.670400(40)×10–8 W×m–2×K–4  

Wien displacement law constant b  2.8977685(51)×10–3 m×K 

Atomic mass unit u  1.66053886(28)×10–27 kg 

Electron mass em  9.1093826(16)×10–31 kg 

Neutron mass nm  1.67492728(29)×10–27 kg 

Proton mass pm  1.67262171(29)×10–27 kg 

Elementary charge e  1.60217653(14)×10–19 C 

Speed of light in vacuum c  2.99792458×108 m /s 

Bohr magnetron B  9.27400949(80)×10–24 J/T 

Bohr radius 0a  5.291772108(18)×10–11 m 

Compton wavelength C  2.426310238(16)×10–12 m 
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Table A6. Periodic table of elements 

Name 
ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

Name 
ANSymbol 

(AN – atomic 

number) 

Standard 

atomic 

weight 

1 2 3 1 2 3 

Actinium 89Ac 227 Einsteinium 99Es 252 

Aluminium 13Al 26.9815384 Erbium 68Er 167.259 

Americium 95Am 243 Europium 63Eu 151.964 

Antimony 51Sb 121.760 Fermium 100Fm 257 

Argon 18Ar 39.948 Flerovium 114Fl 289 

Arsenic 33As 74.921595 Fluorine 9F 18.9984032 

Astatine 85At 210 Francium 87Fr 223 

Barium 56Ba 137.327 Gadolinium 64Gd 157.25 

Berkelium 97Bk 247 Gallium 31Ga 69.723 

Beryllium 4Be 9.0121831 Germanium 32Ge 72.630 

Bismuth 83Bi 208.98040 Gold 79Au 196.966570 

Bohrium 107Bh 270 Hafnium 72Hf 178.49 

Boron 5B 10.81 Hassium 108Hs 270 

Bromine 35Br 79.904 Helium 2He 4.002602 

Cadmium 48Cd 112.414 Holmium 67Ho 164.930328 

Calcium 20Ca 40.078 Hydrogen 1H 1.008 

Californium 98Cf 251 Indium 49In 114.818 

Carbon 6C 12.011 Iodine 53I 126.90447 

Caesium  55Cs 132.905452 Iridium 77Ir 192.217 

Cerium 58Ce 140.116 Iron 26Fe 55.845 

Chlorine 17Cl 35.45 Krypton 36Kr 83.798 

Chromium 24Cr 51.9961 Lanthanum 57La 138.90547 

Cobalt 27Co 58.933194 Lawrencium 103Lr 266 

Copernicium 112Cn 285 Lead 82Pb 207.2 

Copper 29Cu 63.546 Lithium 3Li 6.94 

Curium 96Cm 247 Livermorium 116Lv 293 

Darmstadtium 110Ds 281 Lutetium 71Lu 174.9668 

Dubnium 105Db 268 Magnesium 12Mg 24.305 

Dysprosium 66Dy 162.500 Manganese 25Mn 54.938043 
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1 2 3 1 2 3 

Meitnerium 109Mt 278 Rubidium 37Rb 85.4678 

Mendelevium 101Md 258 Ruthenium 44Ru 101.07 

Mercury 80Hg 200.592 Rutherfordium 104Rf 267 

Molybdenum 42Mo 95.95 Samarium 62Sm 150.36 

Moscovium 115Mc 290 Scandium 21Sc 44.955908 

Neodymium 60Nd 144.242 Seaborgium 106Sg 269 

Neon 10Ne 20.1797 Selenium 34Se 78.971 

Neptunium 93Np 237 Silicon 14Si 28.085 

Nickel 28Ni 58.6934 Silver 47Ag 107.8682 

Nihonium 113Nh 286 Sodium 11Na 22.9897693 

Niobium 41Nb 92.90637 Strontium 38Sr 87.62 

Nitrogen 7N 14.007 Sulfur 16S 32.06 

Nobelium 102No 259 Tantalum 73Ta 180.94788 

Oganesson 118Og 294 Technetium 43Tc 98 

Osmium 76Os 190.23 Tellurium 52Te 127.60 

Oxygen 8O 15.999 Tennessine 117Ts 294 

Palladium 46Pd 106.42 Terbium 65Tb 158.925354 

Phosphorus 15P 30.9737620 Thallium 81Tl 204.38 

Platinum 78Pt 195.084 Thorium 90Th 232.0377 

Plutonium 94Pu 244 Thulium 69Tm 168.934218 

Polonium 84Po 209 Tin 50Sn 118.710 

Potassium 19K 39.0983 Titanium 22Ti 47.867 

Praseodymium 59Pr 140.90766 Tungsten 74W 183.84 

Promethium 61Pm 145 Uranium 92U 238.02891 

Protactinium 91Pa 231.03588 Vanadium 23V 50.9415 

Radium 88Ra 226 Xenon 54Xe 131.293 

Radon 86Rn 222 Ytterbium 70Yb 173.045 

Rhenium 75Re 186.207 Yttrium 39Y 88.90584 

Rhodium 45Rh 102.90549 Zinc 30Zn 65.38 

Roentgenuim 111Rg 282 Zirconium 40Zr 91.224 
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SUBJECT INDEX 
 

absolute thermodynamic 

temperature scale 
24 degenerate state 55 

activation energy of diffusion 107 degree of temperature 22 

adiabatic exponent 42 diffusion coefficient 99 

adiabatic process 42 dynamic equilibrium 69 

atom 9 dynamic viscosity 98 

average speed 16 edge angle 80 

Avogadro number 10 enthalpy 51 

Avogadro's law 22 entropy 44 

boiling 83 equation of state 11 

boiling point 22 equilibrium process 11 

Boltzmann constant 13 equilibrium state 11 

Boltzmann distribution 25 evaporation 82 

Boltzmann formula 45 external parameters 11 

Boyle’s law 28 Fick’s law 99 

Brownian motion 26 first law of thermodynamics 40 

bubble chamber 85 fluctuations 37 

capillary phenomena 81 Fourier’s law 97 

Carnot cycle 46 free energy 52 

Charles’s law 30 freezing point 22 

chemical potential 87 gas constant 19 

Clapeyron – Clausius equation 71 Gay-Lussac’s law 29 

Clausius inequality 48 Gibbs phase rule 88 

cloud chamber 85 Gibbs thermodynamic potential 52 

coefficient of external thermal 

conductivity 
108 heat 39 

coefficient of thermal 

conductivity 
97 heat capacity 40 

coefficient of thermal diffusivity 101 heat capacity at constant pressure 40 

coefficient of volume expansion 29 heat capacity at constant volume 40 

compressibility 29 heat of phase transformation 71 

convective heat transfer 39 heat transfer 39 

covalent bond 64 Helmholtz function 52 

critical opalescence 70 hydrogen bond 67 

critical pressure 68 internal energy  28 

critical state 68 internal parameters 11 

critical temperature 68 inversion temperature 77 

critical volume 68 ionic bond 64 

cross section 18 ionic crystal 65 

cryogenic storage dewar 103 isobar equation 29 

cyclic process 46 isobaric process 29 

Dalton’s law 21 isochore equation 30 

degenerate gases 55 isochoric process 30 
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isotherm equation 28 Poisson’s equation 42 

isothermal compressibility 72 Poisson's ratio 42 

isothermal process 28 polarization 65 

isotremic compressibility 

coefficient 
29 principle of detailed equilibrium 17 

Joule – Thomson differential 

effect 
75 process 11 

Joule –Thomson integral effect 75 quantity of a substance 9 

kelvin 13 radiant heat transfer 39 

Laplace formula 81 radiation thermometry 38 

Le Chatelier’s principle 54 radiometric force 105 

Lennard-Jones potential 66 Raoult’s law 88 

lever arm rule 70 relaxation process 38 

Loshmidt constant 22 relaxation time 38 

Maxwell – Boltzmann 

distribution 
27 root-mean-square speed 16 

Maxwell distribution 15 second law of thermodynamics 49 

Mayer's relation 42 Seebeck effect 112 

mean free path 18 specific heat 40 

Mendeleev – Clapeyron equation 20 statistical sum 54 

metal bond 67 STP 10 

metastable state 74 surface tension force 79 

molar heat capacity 40 temperature 12 

molar mass 10 temperature principle 38 

molar volume 10 thermal coefficient of pressure 30 

mole 9 thermal conductivity 39 

molecular-kinetic theory 9 thermal slip 106 

molecule 9 thermodynamic equilibrium 12 

most probable speed 16 thermodynamic parameters 37 

Nernst theorem 54 thermodynamics 37 

non equilibrium process 11 thermoelectromotive force 112 

Onsager coefficients 110 thermometric body 22 

Onsager relations 111 thermometric quantity 22 

partial pressures 21 thermostat 38 

Peltier coefficient 113 third law of thermodynamics 55 

Peltier effect 113 Thomson’s formula 83 

perpetual motion machine of the 

first kind 
42 total relaxation time 38 

phase 68 van der Waals constants 73 

phase transitions of the first kind 71 van der Waals equation 73 

phenomenological approach 37 van der Waals force 65 
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NAME INDEX 
 

Amontons 54 Fourier 97 

Avogadro 10 Gay-Lussac 28 

Boltzmann 13 Gibbs 52 

Bose 27 Helmholtz 52 

Boyle 28 Joule 75 

Braun 54 Kelvin 13 

Brown 26 Lennard-Jones 66 

Carnot 46 Loschmidt 22 

Celsius 23 Mariotte 28 

Charles 28 Maxwell 15 

Chatelier 54 Mayer 42 

Clapeyron 20 Mendeleev 20 

Clausius 11 Nernst 54 

da Vinci 81 Onsager 110 

Dalton 21 Peltier 113 

Dewar 103 Raoult 88 

Dirac 27 Réaumur 23 

Fahrenheit 23 Seebeck 112 

Fermi 27 Thomson 13 

Fick 99 van der Waals 65 
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