ПОКРЫТИЯ ДЛЯ АВТОМОБИЛЬНЫХ ДОРОГ ИЗ ПЕМЕНТОБЕТОНА

Солоненко И.П.

Одесская государственная академия строительства и архитектуры, Украина

Постановка проблемы

Развитие дорожной инфраструктуры нашей страны предусматривает строительство современных автомагистралей с высокими транспортно-эксплуатационными показателями (ТЭП), а также реконструкцию существующих сетей дорог. Это чрезвычайно актуально в связи с целевой программой по интеграции Украины в Европейское сообщество [1].

Один из путей повышения ТЭП — применение в качестве дорожного покрытия для автомобильных дорог (АД) цементобетона (ЦБ). Исследования, проводимые в нашей стране, в США, в странах Европы, Китае, Японии, Австралии и т.д. [2] показывают, что такое покрытие обладает, высокими показателями прочности, долговечности, выдерживают большие динамические нагрузки, позволяют снизить расходы на содержание и ремонт. Это определяет актуальность и важность разработки цементобетонных композиций для АЛ.

Цель и задачи исследования

В качестве дорожного покрытия (ДП) из ЦБ в Украине используется бетон класса ВЗ5 (С 30/35) [3]. Евроинтеграция Украины определяет необходимость гармонизации нормативных документов [4] по требованиям к бетонам для дорожного покрытия.

На сегодняшний день нормы прочности, предъявляемые Европейским комитетом (CEN), по некоторым показателям выше, чем в Украине (табл. 1). Согласованные требования к материалу ДП позволит в дальнейшем избежать необходимости существенной реконструкции транспортной инфраструктуры при вхождении Украины в Европейский союз.

Целью исследования: изучение возможности повышения физико-механических свойств модифицированных мелкозернистых цементобетонов для дорожного покрытия за счет подбора их составов.

Таблица 1 Нормы прочности цементобетона, применяемые для дорожного строительства в Украине (ДБН В.2.3-4:2007) и в странах Европы (EN 206-1) [3, 5]

Назначе-ния	Марка п	емента	Классы	ПО	Прочность	на
ЦБ			прочности	на сжатие	растяжение	при
			(МПА)		изгибе (МП	A)
	ДБН	EN	ДБН	EN	ДБН	EN
Для	M 450	CEM I	B 35	52,5H	4,4	6,5
дорожного						
покрытия						
Дорожное	M 400	CEM	B 30	42,5H	4,0	6
основание		ІІ/А-Ш				
Для	M 350	CEM	B 25	32,5H,	3,6	5,5
укрепления		II/B-T		32,5A		
грунтов						

Исходя из поставленной цели, были определены следующие задачи исследования:

- исследовать влияние на физико-механические характеристики (ФМХ) ЦБ путём введения в его состав пластификатора (Dynamon Easy 11) и воздухововлекающей добавки (ВВД) (РТ-1);
- изучить воздействие на ФМХ путём введения в состав ЦБ модифицированного бетона минеральных наполнителей микрокремнезема (МК) и золы-уноса (3-У);
- исследовать воздействие на ФМХ путём введения в состав модифицированного бетона полипропиленовой фибры (Фп);
- разработать комплекс экспериментально-статистических моделей (ЭСМ), описывающих изменения ФМХ, модифицированных мелкозернистых бетонов для ДП АД за счет введения в состав пластифицирующих, воздухововлекающих добавок и наполнителей.

Основная часть.

Перед началом проведения исследования на основе анализа литературных источников и личного опыта автора были выбраны факторы влияния и диапазон их изменения (таб. 2). В качестве функции отклика принимались следующие Φ MX материалов ДП: прочность на сжатие ($f_{ck,cube}$); прочность на растяжения при изгибе

 (f_{ctk}) ; водонепроницаемость (W); ударостойкость (T); истираемость (G); трещиностойкость (K_{1c}) .

Исследования по определению ФМХ ЦБ для АД проводились в лабораториях кафедр: строительных материалов; проектирования, строительства и эксплуатации, автомобильных дорог; процессов и аппаратов в технологии строительных материалов (ПАТСМ) Одесской государственной академий строительства и архитектуры (ОГАСА). Опыты проводились по методикам [6 - 8] на образцах 10х10х10, 7х7х7, 4х4х16. Образцы изготовлялись из материала: цемент ПЦ — І — Н 500 (ОАО «Югцемент»); песок кварцевый, мытый (Вознесенский карьер) (Мкр = 2,5); гранитный щебень (фр. от 5 до 10 мм); пластифицирующая добавка Dynamon Easy 11 («Мареl»); воздухововлекающая добавка РТ-1 («Мареl»); микрокремнезем (Никопольский завод ферросплавов); зола - уноса (Ладыжинская ТЭС); полипропиленовая фибра - MAPEFIBRE («Мареl»).

Таблица 2 Факторы и их диапазон изменения

X_1 – количество цемента введенного в состав раствора									
X_2 – количество пластификатора D E 11 введенного в состав раствора									
X_3 – количество ВВД РТ-1 в	X ₃ – количество ВВД РТ-1 введенного в состав раствора								
X_4 –количество полипропил	X_4 –количество полипропиленовой фибры введенного в состав раствора								
X_5 – количество наполнител	X_5 – количество наполнители (МК, 3-У) введенного в состав раствора								
диапазон изменения факторов									
УРОВНИ	X_1	X _{2,} %	X ₃ %	X ₄ %	X ₅ %				
ут ОВПИ					МК	3-У*			
Основной (0)	470	0,75	0,6	0,1	5	10			
Интервал	100	0,75	0,6	0,1	5	10			
Верхний (+1)	570	1,5	1,2	0,2	10	20			
Нижний (-1)	370	0	0	0	0	0			

^{*-} опыты с 3-У вместо МК

Состав опытных образцов приведен в таблице 3. Количество испытуемых образцов материала (каждого состава бетона) согласно рекомендациям [9] было не менее 3 в каждой точке плана эксперимента. В исследованиях принималась постоянная подвижность смеси от 16 до 21 см, определялась по методике [10]. Необходимая подвижность бетонной смеси достигалась путем изменения водоцементного отношения (в опытах изменялась от 0.25 до 0.65). Изготовленные образцы набирали прочности В

нормально-влажностные условия твердения ($t=20^{0}$ C, W=80%) в течений 28 суток.

Результаты проведенных исследований представлены в таблицах 4 и 5. В таблице 4 представлены результаты опытов для составов бетонной смеси с применением микронаполнителя МК.

Таблица 3 План проведения эксперимента, составы бетонной смеси

План						Компоненты состава							
№	X_1	X_2	X_3	X_4	X_5	Ц, кг/м ³	Щ, кг/м ³	П, кг/м ³	D Е кг/м ³	РТ-1, л/м ³	Фп, кг/м ³	МК, кг/м ³	ЗУ* %
1	1	1	1	1	-1	570	1036	490	8,55	1,2	1,14	0	0
2	1	1	1	-1	1	570	1036	490	8,55	1,2	0	57	20
3	1	1	-1	1	1	570	1036	490	8,55	0	1,14	57	20
4	1	1	-1	-1	-1	570	1036	490	8,55	0	0	0	0
5	1	-1	1	1	1	570	1036	490	0	1,2	1,14	57	20
6	1	-1	1	-1	-1	570	1036	490	0	1,2	0	0	0
7	1	-1	-1	1	-1	570	1036	490	0	0	1,14	0	0
8	1	-1	-1	-1	1	570	1036	490	0	0	0	57	20
9	-1	1	1	1	1	370	1080	559	5,55	1,2	0,74	37	20
10	-1	1	1	-1	-1	370	1080	559	5,55	1,2	0	0	0
11	-1	1	-1	1	-1	370	1080	559	5,55	0	0,74	0	0
12	-1	1	-1	-1	1	370	1080	559	5,55	0	0	37	20
13	-1	-1	1	1	-1	370	1080	559	0	1,2	0,74	0	0
14	-1	-1	1	-1	1	370	1080	559	0	1,2	0	37	20
15	-1	-1	-1	1	1	370	1080	559	0	0	0,74	37	20
16	-1	-1	-1	-1	-1	370	1080	559	0	0	0	0	0
17	1	0	0	0	0	570	1036	490	4,275	0,6	0,57	28,5	10
18	-1	0	0	0	0	370	1080	559	2,775	0,6	0,37	18,5	10
19	0	1	0	0	0	470	1055	578	7,05	0,6	0,47	23,5	10
20	0	-1	0	0	0	470	1055	578	0	0,6	0,47	23,5	10
21	0	0	1	0	0	470	1055	578	3,525	1,2	0,47	23,5	10
22	0	0	-1	0	0	470	1055	578	3,525	0	0,47	23,5	10
23	0	0	0	1	0	470	1055	578	3,525	0,6	0,94	23,5	10
24	0	0	0	-1	0	470	1055	578	3,525	0,6	0	23,5	10
25	0	0	0	0	1	470	1055	578	3,525	0,6	0,47	47	20
26	0	0	0	0	-1	470	1055	578	3,525	0,6	0,47	0	0
27	0	0	0	0	0	470	1055	578	3,525	0,6	0,47	23,5	10

В таблице 5 представлены результаты дополнительных опытов для составов бетонной смеси с применением микронаполнителя 3-У. Для наглядности результаты опытов по прочности на сжатие и растяжения при изгибе представлены на рис. 1 и 2.

Проведенные исследования позволили рассчитать ЭСМ по методике [11] с применением диалоговой системы СОМРЕХ, разработанной на кафедре ПАТСМ, ОГАСА. Все модели построены с риском не более α =0,1 (табл. 6).

Таблица 4 Результаты основных опытов (микронаполнитель МК)

	Результаты основных опытов (микронаполнитель МК)						
$N_{\underline{0}}$	$f_{ck.cube}$	f_{ctk}	W	T	G	K _{1c} ,	
сост.	(МПА)	(МПА)	(атм)	(Дж/cм ²)	(Γ/cm^2)	$(M\Pi a^{x} M^{0,5})$	
1	55,82	8,15	12	9	0,30	0,14	
2	60,20	7,67	16	8	0,55	0,13	
3	61,50	8,00	14	9	0,30	0,13	
4	58,5	7,38	12	7	0,61	0,13	
5	53,52	6,89	8	8	0,40	0,13	
6	50,20	5,43	8	6	0,67	0,11	
7	50,53	6,73	8	8	0,37	0,13	
8	53,20	5,45	8	6	0,55	0,12	
9	43,50	7,30	10	8	0,40	0,17	
10	44,30	6,84	10	6	0,82	0,15	
11	49,70	7,75	10	6	0,41	0,15	
12	53,58	5,89	10	8	0,48	0,15	
13	43,34	5,40	10	6	0,46	0,12	
14	46,30	5,89	6	4	0,74	0,14	
15	46,45	5,10	6	6	0,45	0,11	
16	43,62	5,96	6	4	0,97	0,14	
17	55,30	4,42	12	8	0,65	0,08	
18	47,40	6,95	8	6	0,58	0,14	
19	55,38	6,34	10	7	0,70	0,11	
20	48,42	6,20	10	5	0,65	0,13	
21	52,25	6,05	8	5	0,65	0,11	
22	52,57	6,38	8	6	0,66	0,12	
23	52,40	6,28	10	9	0,38	0,12	
24	52,63	6,85	8	6	0,63	0,13	
25	53,42	5,98	10	6	0,61	0,11	
26	49,23	6,20	8	6	0,58	0,12	
27	52,55	6,22	8	6	0,63	0,12	

Таблица 5 Результаты дополнительных опытов (микронаполнитель 3-У)

№ coct.	f _{ck.cube} (ΜΠΑ)	f _{ctk} (ΜΠΑ)	W (атм)	Т (Дж/см ²)	G (г/см ²)	$K_{1c}, (M\Pi a^x M^{0,5})$
2*	52,70	6,80	10	6	0,64	0,13
3*	52,18	7,23	10	8	0,53	0,14
5*	41,50	5,57	6	7	0,58	0,13
8*	43,45	5,05	6	6	0,65	0,12
9*	46,00	6,45	8	7	0,67	0,14
12*	48,52	5,25	10	6	0,75	0,11
14*	31,80	5,55	6	6	0,76	0,17

Продолжение таблицы 5

$N_{\underline{0}}$	fck.cube	fctk	W	T	G	K1c,		
сост.	(МПА)	(МПА)	(атм)	(Дж/cм2)	(г/см2)	(МПахм0,5)		
15*	32,50	5,00	6	7	0,67	0,15		
17*	50,15	5,15	6	6	0,55	0,10		
18*	47,58	6,24	6	5	0,70	0,13		
19*	53,85	6,15	6	6	0,67	0,11		
20*	46,28	5,87	6	7	0,66	0,13		
21*	48,35	5,54	6	6	0,68	0,11		
22*	48,57	5,78	6	6	0,65	0,12		
23*	47,80	6,25	6	8	0,61	0,13		
24*	48,13	5,88	6	6	0,64	0,12		
25*	45,78	5,00	8	6	0,60	0,11		
27*	49,45	5,85	6	5	0,64	0,12		

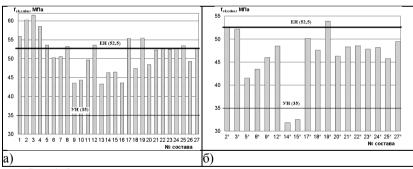


Рис. 1. Зависимость прочности при сжатии исследуемых составов для точек эксперимента: а) микронаполнитель МК; б) микронаполнитель З-У

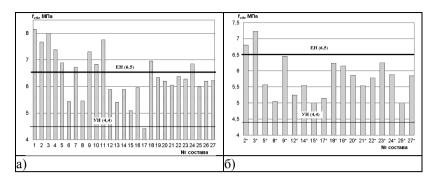


Рис. 2. Зависимость прочности на растяжение при изгибе исследуемых составов: а) микронаполнитель МК; б) микронаполнитель 3-У

Таблица 6 Экспериментально - статистические модели исследуемого бетона

Прочность при сжатии с микрокремнеземом
$f_{ck.cube}$ (M Π a) =52,251+4,477 x_1 -0,681 x_1^2 +1,075 x_1x_2 -1,189 x_2x_3 -0,256 x_3x_4
$-0,693 ext{ } ext{$
$+0.281 x_1 x_5 + 1.468 x_5 - 0.706 x_5^2$
Прочность растяжение при изгибе с микрокремнеземом
$f_{\text{ctk.}}(M\Pi a) = 6,082 + 0,169 x_1 + 0,682 x_2 + 0,332 x_3 x_5 + 0,179 x_1 x_4 + 0,236 x_4 +$
$0,527 \text{ x}_4^2$
Прочность при сжатии с золой – уноса
$f_{ck.cube}$ (M Π a) =49,146+3,759 x_1 -0,426 x_2x_3 +1,053 x_3x_4 -0,441 x_4x_5 +4,353 x_2 -
$0,753 \times_{3} -0,508 \times_{1} \times_{4} +1,845 \times_{2} \times_{5} -1,079 \times_{4}^{2} -2,823 \times_{5} -1,539 \times_{5}^{2}$
Прочность растяжение при изгибе с золой – уноса
$f_{\text{ctk}}(\text{M}\Pi\text{a}) = 5,693 + 0,169 \text{ x}_1 + 0,150 \text{ x}_1\text{x}_2 - 0,133 \text{ x}_3\text{x}_4 + 0,636 \text{ x}_2 + 0,271 \text{ x}_2^2 +$
$0.163 x_2 x_4 + 0.240 x_3 x_5 + 0.126 x_1 x_4 - 0.127 x_2 x_5 + 0.244 x_4 + 0.326 x_4^2 - 0.441 x_5$

Выводы

Проведенные исследования позволили сделать следующие выводы.

Нормы по прочности покрытиям из цементобетона для автомобильных дорог в

Евросоюзе значительно превышают требования, применяемые в Украине. Поэтому гармонизация национальных стандартов заключается в поэтапном переходе на нормы Евросоюза в вопросе подбора состава покрытия для автомобильных дорог.

Зависимости прочности при сжатии образцов с микрокремнеземом, приведенные на рис. 1 а, показывают, что требованиям дБН В.2.3-4:2007 [3] соответствуют всем рассматриваемым составам. Нормам EN 206-1 [5] только составы 1-5, 8, 12, 17, 19, 25 и 27.

Образцы бетона с золой уноса (рис. 1 б) 2*, 3*, 5*, 9*, 12*, 17*-25* и 27* соответствуют украинским нормам [3]. Европейским нормативам удовлетворяют составы 2* и 19*.

По прочности на растяжение при изгибе (рис. 2 а и б) нормам [3] удовлетворяют все рассмотренные составы кроме состава 17. Стандарту [5] соответствуют составы 1-5, 7, 9-11, 18, 24, 2* и 3*.

Summary

Ukrainian and European standards for coating strength of cement concrete are compared. Results of experimental study of physical and mechanical characteristics of the pavement for roads are presented.

Литература

- 1. http://www.regnum.ru/news/1573071.html.
- 2. http://www.rg.ru/2014/01/09/dorogi-sha.html.
- 3. ДБН В.2.3-4:2007 Автомобільні дороги. Частина І. Проектування. Частина ІІ. Будівництво. Київ 2007. 92 с.

- 4. Величко О.М., Коломієць Л.В., Гордієнко Т.Б. Метрологічна простежуваність: основи і нормативне забезпечення. П. Одеса: ВМВ, 2009. 205 с.
 - 5. EN 206-1 Европейский стандарт. Бетон. Часть 1.
- 6. ДСТУ Б В.2.7-214:2009 Будівельні матеріали. Бетони. Методи визначення міцності за контрольними зразками.
 - 7. ГОСТ 23046 78 Метод испытания на удар.
- 8. ДСТУ Б В.2.7-212:2009. Будівельні матеріали. Бетони. Методи визначення стираності.
- 9. Дворкин Л.И., Дворкин О.Л. Проектирование составов дорожных цементных бетонов повышенной долговечности // Вісник. Технічні науки: Зб. наук. праць. Вип. 4 (28).Ч.2. Рівне : НУВГП, 2004. C.6-15.
- 10. ДСТУ Б В.2.7-114-2002 «Будівельні матеріали. Суміші бетонні. Методи випробувань».
- 11. Вознесенский В.А. ЭС-модели в компьютерном строительном материаловедении / В.А. Вознесенский, Т.В. Ляшенко // Одесса: Астропринт, 2006. 116 с.